Spaces:
Sleeping
Sleeping
compute probabilities
Browse files- rag_app/rag_2.py +39 -13
rag_app/rag_2.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
-
import re
|
2 |
import os
|
3 |
-
|
|
|
|
|
4 |
from llama_index.llms.llama_cpp import LlamaCPP
|
5 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
6 |
from llama_index.retrievers.bm25 import BM25Retriever
|
7 |
from llama_index.core.retrievers import QueryFusionRetriever
|
8 |
from llama_index.core.query_engine import RetrieverQueryEngine
|
9 |
-
from llama_index.core import StorageContext, load_index_from_storage
|
10 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
11 |
from llama_index.core.postprocessor import LLMRerank
|
12 |
from llama_index.core.node_parser import TokenTextSplitter
|
@@ -37,9 +38,12 @@ llm = LlamaCPP(
|
|
37 |
temperature=0.1,
|
38 |
max_new_tokens=256,
|
39 |
context_window=16384,
|
40 |
-
model_kwargs={"n_gpu_layers":-1},
|
41 |
messages_to_prompt=messages_to_prompt,
|
42 |
-
completion_to_prompt=completion_to_prompt)
|
|
|
|
|
|
|
43 |
|
44 |
|
45 |
embedding_model = HuggingFaceEmbedding(
|
@@ -86,13 +90,39 @@ def is_relevant(query, index, threshold=0.7):
|
|
86 |
return not similarity <= threshold
|
87 |
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def answer_question(query):
|
|
|
|
|
|
|
90 |
print("loading bm25 retriever")
|
91 |
bm25_retriever = BM25Retriever.from_persist_dir("models/bm25_retriever")
|
92 |
print("loading saved vector index")
|
93 |
storage_context = StorageContext.from_defaults(persist_dir="models/precomputed_index")
|
94 |
index = load_index_from_storage(storage_context)
|
95 |
|
|
|
|
|
|
|
96 |
retriever = QueryFusionRetriever(
|
97 |
[
|
98 |
index.as_retriever(similarity_top_k=5, verbose=True),
|
@@ -111,12 +141,8 @@ def answer_question(query):
|
|
111 |
retriever=retriever,
|
112 |
node_postprocessors=[reranker],
|
113 |
)
|
114 |
-
|
115 |
-
if is_harmful(query):
|
116 |
-
return "This query has been flagged as unsafe."
|
117 |
-
|
118 |
-
if not is_relevant(query, index, 0.2):
|
119 |
-
return "This query doesn't appear relevant to finance."
|
120 |
-
|
121 |
response = keyword_query_engine.query(query)
|
122 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
from llama_cpp import Llama
|
5 |
from llama_index.llms.llama_cpp import LlamaCPP
|
6 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
7 |
from llama_index.retrievers.bm25 import BM25Retriever
|
8 |
from llama_index.core.retrievers import QueryFusionRetriever
|
9 |
from llama_index.core.query_engine import RetrieverQueryEngine
|
10 |
+
from llama_index.core import StorageContext, load_index_from_storage, QueryBundle
|
11 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
12 |
from llama_index.core.postprocessor import LLMRerank
|
13 |
from llama_index.core.node_parser import TokenTextSplitter
|
|
|
38 |
temperature=0.1,
|
39 |
max_new_tokens=256,
|
40 |
context_window=16384,
|
41 |
+
model_kwargs={"n_gpu_layers":-1, 'logits_all': True, 'logprobs': True,},
|
42 |
messages_to_prompt=messages_to_prompt,
|
43 |
+
completion_to_prompt=completion_to_prompt,)
|
44 |
+
|
45 |
+
llm2 = Llama(model_path="models/Llama-3.2-1B-Instruct-Q4_K_M.gguf",
|
46 |
+
n_gpu_layers=-1, n_ctx=8000, logits_all=True)
|
47 |
|
48 |
|
49 |
embedding_model = HuggingFaceEmbedding(
|
|
|
90 |
return not similarity <= threshold
|
91 |
|
92 |
|
93 |
+
def get_sequence_probability(llm, input_sequence):
|
94 |
+
input_tokens = llm.tokenize(input_sequence.encode("utf-8"))
|
95 |
+
sequence_logits = []
|
96 |
+
sequence_logprobs = []
|
97 |
+
|
98 |
+
eval_tokens = input_tokens[:1]
|
99 |
+
|
100 |
+
for token in input_tokens[1:]:
|
101 |
+
llm.eval(eval_tokens)
|
102 |
+
|
103 |
+
probs = llm.logits_to_logprobs(llm.eval_logits)
|
104 |
+
sequence_logits.append(llm.eval_logits[-1][token])
|
105 |
+
sequence_logprobs.append(probs[-1][token])
|
106 |
+
eval_tokens.append(token)
|
107 |
+
|
108 |
+
total_log_prob = sum(sequence_logprobs)
|
109 |
+
sequence_probability = math.exp(total_log_prob)
|
110 |
+
return sequence_probability
|
111 |
+
|
112 |
+
|
113 |
def answer_question(query):
|
114 |
+
if is_harmful(query):
|
115 |
+
return "This query has been flagged as unsafe."
|
116 |
+
|
117 |
print("loading bm25 retriever")
|
118 |
bm25_retriever = BM25Retriever.from_persist_dir("models/bm25_retriever")
|
119 |
print("loading saved vector index")
|
120 |
storage_context = StorageContext.from_defaults(persist_dir="models/precomputed_index")
|
121 |
index = load_index_from_storage(storage_context)
|
122 |
|
123 |
+
if not is_relevant(query, index, 0.2):
|
124 |
+
return "This query doesn't appear relevant to finance."
|
125 |
+
|
126 |
retriever = QueryFusionRetriever(
|
127 |
[
|
128 |
index.as_retriever(similarity_top_k=5, verbose=True),
|
|
|
141 |
retriever=retriever,
|
142 |
node_postprocessors=[reranker],
|
143 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
response = keyword_query_engine.query(query)
|
145 |
+
response_text = str(response)
|
146 |
+
response_prob = get_sequence_probability(llm2, response_text)
|
147 |
+
print(f"Output probability: {response_prob}")
|
148 |
+
return response_text
|