Spaces:
Running
Running
Create brief2.py
Browse files
brief2.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
5 |
+
from matplotlib.colors import to_rgb
|
6 |
+
import re
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
# Load model
|
10 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
11 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
12 |
+
|
13 |
+
def parse_color(color_str):
|
14 |
+
"""
|
15 |
+
Converts a color string (hex, name, or rgba(...)) to an RGB tuple.
|
16 |
+
"""
|
17 |
+
try:
|
18 |
+
if isinstance(color_str, str):
|
19 |
+
if color_str.startswith("rgba("):
|
20 |
+
# Extract the 3 RGB components
|
21 |
+
numbers = list(map(float, re.findall(r"[\d.]+", color_str)))
|
22 |
+
if len(numbers) >= 3:
|
23 |
+
r, g, b = numbers[:3]
|
24 |
+
return int(r), int(g), int(b)
|
25 |
+
else:
|
26 |
+
# Use named or hex color
|
27 |
+
return tuple(int(255 * c) for c in to_rgb(color_str))
|
28 |
+
except Exception:
|
29 |
+
pass
|
30 |
+
raise ValueError(f"Invalid color format: {color_str}. Use hex like '#ff0000', color name like 'red', or rgba format.")
|
31 |
+
|
32 |
+
def apply_mask(image: Image.Image, prompt: str, color: str) -> Image.Image:
|
33 |
+
# Process the input image and prompt
|
34 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
35 |
+
outputs = model(**inputs)
|
36 |
+
preds = outputs.logits[0]
|
37 |
+
|
38 |
+
# Get the binary mask from predictions
|
39 |
+
mask = preds.sigmoid().detach().cpu().numpy()
|
40 |
+
mask = (mask > 0.5).astype(np.uint8)
|
41 |
+
|
42 |
+
# Convert image to RGBA
|
43 |
+
image_np = np.array(image.convert("RGBA"))
|
44 |
+
|
45 |
+
# Resize mask to match image size
|
46 |
+
mask_resized = cv2.resize(mask, (image_np.shape[1], image_np.shape[0]))
|
47 |
+
mask_3d = np.stack([mask_resized] * 4, axis=-1) # Extend mask to 3D
|
48 |
+
|
49 |
+
# Convert the color string to an RGB tuple
|
50 |
+
color_rgb = parse_color(color)
|
51 |
+
overlay_color = np.array([*color_rgb, 128], dtype=np.uint8) # RGBA with alpha 128
|
52 |
+
|
53 |
+
# Create an overlay with the selected color
|
54 |
+
overlay = np.zeros_like(image_np, dtype=np.uint8)
|
55 |
+
overlay[:] = overlay_color
|
56 |
+
|
57 |
+
# Apply the mask to the image
|
58 |
+
masked_image = np.where(mask_3d == 1, overlay, image_np)
|
59 |
+
return Image.fromarray(masked_image)
|
60 |
+
|
61 |
+
# Gradio Interface
|
62 |
+
iface = gr.Interface(
|
63 |
+
fn=apply_mask,
|
64 |
+
inputs=[
|
65 |
+
gr.Image(type="pil", label="Input Image"),
|
66 |
+
gr.Textbox(label="Segmentation Prompt", placeholder="e.g., helmet, road, sky"),
|
67 |
+
gr.ColorPicker(label="Mask Color", value="#ff0000")
|
68 |
+
],
|
69 |
+
outputs=gr.Image(type="pil", label="Segmented Image"),
|
70 |
+
title="CLIPSeg Image Masking",
|
71 |
+
description="Upload an image, input a prompt (e.g., 'person', 'sky'), and pick a mask color."
|
72 |
+
)
|
73 |
+
|
74 |
+
iface.launch()
|