snackshell commited on
Commit
4fe456a
Β·
verified Β·
1 Parent(s): de25058

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -133
app.py CHANGED
@@ -1,154 +1,64 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
8
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
  pipe = pipe.to(device)
19
 
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
 
38
 
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
  return image, seed
52
 
53
-
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
 
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
 
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
 
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
  if __name__ == "__main__":
154
  demo.launch()
 
1
  import gradio as gr
2
+ from diffusers import StableDiffusionPipeline
3
+ from PIL import Image, ImageDraw, ImageFont
 
 
 
4
  import torch
5
+ import random
6
 
7
+ # Load model
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ torch_dtype = torch.float16 if device == "cuda" else torch.float32
10
 
11
+ pipe = StableDiffusionPipeline.from_pretrained(
12
+ "runwayml/stable-diffusion-v1-5",
13
+ torch_dtype=torch_dtype,
14
+ revision="fp16" if device == "cuda" else None
15
+ )
 
16
  pipe = pipe.to(device)
17
 
18
+ MAX_SEED = 2**32 - 1
19
+
20
+ # Add "SelamGPT" watermark to image
21
+ def add_watermark(image):
22
+ draw = ImageDraw.Draw(image)
23
+ font = ImageFont.load_default()
24
+ text = "SelamGPT"
25
+ margin = 10
26
+ x = image.width - draw.textlength(text, font=font) - margin
27
+ y = image.height - 20
28
+ draw.text((x, y), text, font=font, fill=(255, 255, 255))
29
+ return image
30
+
31
+ # Main generation function
32
+ def generate(prompt, seed, randomize_seed):
33
+ if randomize_seed or seed == 0:
 
34
  seed = random.randint(0, MAX_SEED)
35
+ generator = torch.Generator(device).manual_seed(seed)
36
 
37
+ image = pipe(prompt=prompt, generator=generator).images[0]
38
+ image = add_watermark(image)
 
 
 
 
 
 
 
 
 
 
39
  return image, seed
40
 
 
41
  examples = [
42
+ "αŠ α‹²αˆ΅ α‹˜αˆ˜αŠ“α‹Š αŠ¨α‰°αˆ› α‰ α‹°αˆ˜αŠ“ መካከል",
43
+ "A futuristic Ethiopian skyline at night",
44
+ "αŠ αŠ•α‹΅ α‹¨αα‰…αˆ­ α‹΅αˆ«αˆ› α‰ α‰°αˆ«αˆ« በታች",
45
  ]
46
 
47
+ with gr.Blocks() as demo:
48
+ gr.Markdown("# SelamGPT ፑ Text-to-Image Generator πŸ–ΌοΈ\nGenerate creative visuals from your imagination!")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ prompt = gr.Textbox(label="Image Prompt (in Amharic or English)", placeholder="e.g. αŠ α‹²αˆ΅ αŠ¨α‰°αˆ› α‰ αŒ¨αˆˆαˆ› α‹αˆ΅αŒ₯")
51
+ run_button = gr.Button("Generate")
 
 
 
 
 
52
 
53
+ result = gr.Image(label="Generated Image")
54
+
55
+ with gr.Accordion("βš™οΈ Advanced Settings", open=False):
56
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
57
+ randomize_seed = gr.Checkbox(label="🎲 Randomize seed", value=True)
 
 
 
58
 
59
+ gr.Examples(examples=examples, inputs=[prompt])
 
 
 
 
 
 
60
 
61
+ run_button.click(fn=generate, inputs=[prompt, seed, randomize_seed], outputs=[result, seed])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()