|
import os |
|
import json |
|
import argparse |
|
import subprocess |
|
import threading |
|
import concurrent.futures |
|
from datetime import datetime |
|
from e2b_desktop import Sandbox |
|
from huggingface_hub import get_token |
|
from io import BytesIO |
|
from PIL import Image |
|
from e2bqwen import QwenVLAPIModel, E2BVisionAgent, get_agent_summary_erase_images |
|
|
|
from dotenv import load_dotenv |
|
|
|
load_dotenv(override=True) |
|
|
|
E2B_API_KEY = os.getenv("E2B_API_KEY") |
|
|
|
try: |
|
HUGGINGFACE_API_KEY = get_token() |
|
if not HUGGINGFACE_API_KEY: |
|
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY") |
|
if not HUGGINGFACE_API_KEY: |
|
raise ValueError( |
|
"No Hugging Face token found. Please login with `huggingface-cli login` or set HUGGINGFACE_API_KEY environment variable" |
|
) |
|
except ImportError: |
|
|
|
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY") |
|
WIDTH = 1024 |
|
HEIGHT = 768 |
|
SANDBOX_TIMEOUT = 600 |
|
|
|
|
|
print_lock = threading.Lock() |
|
|
|
|
|
def thread_safe_print(*args, **kwargs): |
|
"""Thread-safe print function""" |
|
with print_lock: |
|
print(*args, **kwargs) |
|
|
|
|
|
|
|
def get_git_hash(): |
|
try: |
|
result = subprocess.run( |
|
["git", "rev-parse", "--short", "HEAD"], |
|
stdout=subprocess.PIPE, |
|
stderr=subprocess.PIPE, |
|
text=True, |
|
) |
|
if result.returncode == 0: |
|
return result.stdout.strip() |
|
return "nogit" |
|
except: |
|
return "nogit" |
|
|
|
|
|
def create_agent(data_dir, desktop, max_steps: int): |
|
"""Create an agent with the E2B desktop sandbox""" |
|
model = QwenVLAPIModel( |
|
model_id="Qwen/Qwen2.5-VL-72B-Instruct", |
|
hf_token=HUGGINGFACE_API_KEY, |
|
) |
|
|
|
|
|
|
|
|
|
return E2BVisionAgent( |
|
model=model, |
|
data_dir=data_dir, |
|
desktop=desktop, |
|
max_steps=max_steps, |
|
verbosity_level=2, |
|
|
|
) |
|
|
|
|
|
def chat_message_to_json(obj): |
|
"""Custom JSON serializer for ChatMessage and related objects""" |
|
if hasattr(obj, "__dict__"): |
|
|
|
result = obj.__dict__.copy() |
|
|
|
|
|
if "raw" in result: |
|
del result["raw"] |
|
|
|
|
|
if "content" in result and result["content"] is not None: |
|
if hasattr(result["content"], "__dict__"): |
|
result["content"] = chat_message_to_json(result["content"]) |
|
|
|
if "tool_calls" in result and result["tool_calls"] is not None: |
|
result["tool_calls"] = [ |
|
chat_message_to_json(tc) for tc in result["tool_calls"] |
|
] |
|
|
|
return result |
|
elif isinstance(obj, (list, tuple)): |
|
return [chat_message_to_json(item) for item in obj] |
|
else: |
|
return obj |
|
|
|
|
|
def save_final_status(folder, status: str, summary, error_message=None) -> None: |
|
"""Save metadata about the run""" |
|
metadata_path = os.path.join(folder, "metadata.json") |
|
with open(metadata_path, "w") as output_file: |
|
output_file.write( |
|
json.dumps( |
|
{"status": status, "summary": summary, "error_message": error_message}, |
|
default=chat_message_to_json, |
|
) |
|
) |
|
|
|
|
|
def run_example_once(example_name, example_text, run_index, example_dir, max_steps): |
|
"""Run a single example once and return the result""" |
|
run_dir = os.path.join(example_dir, f"run_{run_index}") |
|
os.makedirs(run_dir, exist_ok=True) |
|
|
|
|
|
with open(os.path.join(run_dir, "task.txt"), "w") as f: |
|
f.write(example_text) |
|
|
|
thread_safe_print(f" Starting run {run_index} for example '{example_name}'") |
|
|
|
|
|
desktop = None |
|
try: |
|
desktop = Sandbox( |
|
api_key=E2B_API_KEY, |
|
resolution=(WIDTH, HEIGHT), |
|
dpi=96, |
|
timeout=SANDBOX_TIMEOUT, |
|
template="k0wmnzir0zuzye6dndlw", |
|
) |
|
|
|
|
|
setup_cmd = """sudo mkdir -p /usr/lib/firefox-esr/distribution && echo '{"policies":{"OverrideFirstRunPage":"","OverridePostUpdatePage":"","DisableProfileImport":true,"DontCheckDefaultBrowser":true}}' | sudo tee /usr/lib/firefox-esr/distribution/policies.json > /dev/null""" |
|
desktop.commands.run(setup_cmd) |
|
|
|
|
|
agent = create_agent(data_dir=run_dir, desktop=desktop, max_steps=max_steps) |
|
|
|
screenshot_bytes = desktop.screenshot(format="bytes") |
|
initial_screenshot = Image.open(BytesIO(screenshot_bytes)) |
|
try: |
|
agent.run(task=example_text, images=[initial_screenshot]) |
|
summary = get_agent_summary_erase_images(agent) |
|
save_final_status(run_dir, "completed", summary=summary) |
|
thread_safe_print( |
|
f" ✓ Example '{example_name}' run {run_index} completed successfully" |
|
) |
|
result = {"status": "completed", "run_dir": run_dir} |
|
except Exception as e: |
|
error_message = f"Error in agent execution: {str(e)}" |
|
thread_safe_print( |
|
f" ✗ Example '{example_name}' run {run_index} failed: {error_message}" |
|
) |
|
summary = ( |
|
get_agent_summary_erase_images(agent) |
|
if hasattr(agent, "memory") |
|
else None |
|
) |
|
save_final_status( |
|
run_dir, "failed", summary=summary, error_message=error_message |
|
) |
|
result = {"status": "failed", "run_dir": run_dir, "error": error_message} |
|
except Exception as e: |
|
raise e |
|
error_message = f"Error setting up sandbox: {str(e)}" |
|
thread_safe_print( |
|
f" ✗ Example '{example_name}' run {run_index} failed: {error_message}" |
|
) |
|
save_final_status(run_dir, "failed", summary=None, error_message=error_message) |
|
result = {"status": "failed", "run_dir": run_dir, "error": error_message} |
|
finally: |
|
|
|
if desktop: |
|
try: |
|
desktop.kill() |
|
except: |
|
pass |
|
|
|
return result |
|
|
|
import traceback |
|
|
|
def run_example(example_name, example_text, num_runs, example_dir, max_steps): |
|
"""Run a single example multiple times using threads for each run""" |
|
thread_safe_print(f"\nRunning example '{example_name}': '{example_text[:50]}...'") |
|
|
|
results = [] |
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_runs) as executor: |
|
|
|
future_to_run = { |
|
executor.submit( |
|
run_example_once, example_name, example_text, j, example_dir, max_steps |
|
): j |
|
for j in range(num_runs) |
|
} |
|
|
|
|
|
for future in concurrent.futures.as_completed(future_to_run): |
|
run_index = future_to_run[future] |
|
try: |
|
result = future.result() |
|
results.append(result) |
|
except Exception as exc: |
|
error_traceback = traceback.format_exc() |
|
thread_safe_print( |
|
f" ✗ Run {run_index} for '{example_name}' generated an exception:\n{error_traceback}" |
|
) |
|
results.append( |
|
{"status": "error", "run_index": run_index, "error": str(exc)} |
|
) |
|
|
|
return results |
|
|
|
|
|
def run_evaluation(examples, num_runs, output_dir, max_parallel, max_steps): |
|
"""Run each example n times and save the results""" |
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
git_hash = get_git_hash() |
|
eval_dir = os.path.join(output_dir, f"eval_{timestamp}_{git_hash}") |
|
os.makedirs(eval_dir, exist_ok=True) |
|
|
|
start_time = datetime.now() |
|
|
|
thread_safe_print(f"Starting evaluation. Results will be saved to: {eval_dir}") |
|
thread_safe_print( |
|
f"Will run {len(examples)} examples, {num_runs} times each, with {max_parallel} parallel examples" |
|
) |
|
|
|
|
|
with open(os.path.join(eval_dir, "examples.json"), "w") as f: |
|
json.dump(examples, f, indent=2) |
|
|
|
all_results = {} |
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=max_parallel) as executor: |
|
|
|
example_dirs = {} |
|
for example_name in examples: |
|
example_dir = os.path.join(eval_dir, f"example_{example_name}") |
|
os.makedirs(example_dir, exist_ok=True) |
|
example_dirs[example_name] = example_dir |
|
|
|
|
|
future_to_example = { |
|
executor.submit( |
|
run_example, |
|
example_name, |
|
example_text, |
|
num_runs, |
|
example_dirs[example_name], |
|
max_steps, |
|
): example_name |
|
for example_name, example_text in examples.items() |
|
} |
|
|
|
|
|
for future in concurrent.futures.as_completed(future_to_example): |
|
example_name = future_to_example[future] |
|
try: |
|
results = future.result() |
|
all_results[example_name] = results |
|
|
|
|
|
success_count = sum(1 for r in results if r["status"] == "completed") |
|
thread_safe_print( |
|
f"Example '{example_name}' complete: {success_count}/{num_runs} successful runs ({success_count / num_runs * 100:.1f}%)" |
|
) |
|
except Exception as exc: |
|
thread_safe_print( |
|
f"Example '{example_name}' generated an exception: {exc}" |
|
) |
|
all_results[example_name] = [{"status": "error", "error": str(exc)}] |
|
|
|
|
|
success_counts = { |
|
example_name: sum(1 for r in results if r["status"] == "completed") |
|
for example_name, results in all_results.items() |
|
} |
|
|
|
total_runs = sum(len(results) for results in all_results.values()) |
|
total_successes = sum(success_counts.values()) |
|
|
|
|
|
summary = { |
|
"total_runs": total_runs, |
|
"total_successes": total_successes, |
|
"success_rate": total_successes / total_runs if total_runs > 0 else 0, |
|
"example_success_rates": { |
|
example_name: success_counts[example_name] / len(all_results[example_name]) |
|
for example_name in examples |
|
}, |
|
} |
|
|
|
with open(os.path.join(eval_dir, "summary.json"), "w") as f: |
|
json.dump(summary, f, indent=2) |
|
|
|
thread_safe_print(f"\nEvaluation complete. Results saved to: {eval_dir}") |
|
thread_safe_print( |
|
f"Overall success rate: {summary['success_rate'] * 100:.1f}% ({total_successes}/{total_runs})" |
|
) |
|
for example_name in examples: |
|
success_rate = summary["example_success_rates"][example_name] * 100 |
|
thread_safe_print(f"Example '{example_name}': {success_rate:.1f}% success") |
|
|
|
print("Total duration:", datetime.now() - start_time) |
|
|
|
return eval_dir |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Evaluate computer agent on examples") |
|
parser.add_argument( |
|
"--num-runs", type=int, default=3, help="Number of runs per example" |
|
) |
|
parser.add_argument( |
|
"--output-dir", |
|
type=str, |
|
default="./eval_results", |
|
help="Output directory for evaluation results", |
|
) |
|
parser.add_argument( |
|
"--max-parallel", |
|
type=int, |
|
default=2, |
|
help="Maximum number of examples to run in parallel", |
|
) |
|
parser.add_argument( |
|
"--max-steps", type=int, default=200, help="Maximum number of steps in each run" |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
examples = { |
|
"puppies": "Find me pictures of cute puppies", |
|
"gmaps": "Use Google Maps to find the Hugging Face HQ in Paris", |
|
"wiki": "Go to Wikipedia and find what happend on April 4th", |
|
"commute": "Find out the travel time by train from Bern to Basel on Google Maps", |
|
"hf_space": "Go to Hugging Face Spaces and then find the Space flux.1 schnell. Use the space to generate an image of a GPU", |
|
} |
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
run_evaluation( |
|
examples, args.num_runs, args.output_dir, args.max_parallel, args.max_steps |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|