File size: 11,593 Bytes
73c9c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from transformers import (
    WhisperForConditionalGeneration,
    WhisperProcessor,
    PreTrainedModel,
    WhisperConfig,
)
from transformers.models.whisper.modeling_whisper import WhisperDecoderLayer
from transformers.modeling_outputs import BaseModelOutput
import torch.nn.functional as F
import torch.nn as nn
import torch
import os
from dataclasses import dataclass
from typing import Optional
import json


@dataclass
class CustomModelOutput(BaseModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    head_preds: torch.FloatTensor = None
    labels_head: Optional[torch.FloatTensor] = None
    whisper_logits: torch.FloatTensor = None
    preds: Optional[torch.Tensor] = None


# Define a new head (e.g., a classification layer)
class LinearHead(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearHead, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        return self.linear(x)


class FCNN(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(FCNN, self).__init__()
        hidden_dim = 2 * input_dim
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x


class WhiStress(PreTrainedModel):

    config_class = WhisperConfig
    model_input_names = ["input_features", "labels_head", "whisper_labels"]

    def __init__(
        self,
        config: WhisperConfig,
        layer_for_head: Optional[int] = None,
        whisper_backbone_name="openai/whisper-small.en",
    ):
        super().__init__(config)
        self.whisper_backbone_name = whisper_backbone_name
        self.whisper_model = WhisperForConditionalGeneration.from_pretrained(
            self.whisper_backbone_name,
        ).eval()
        self.processor = WhisperProcessor.from_pretrained(self.whisper_backbone_name)

        input_dim = self.whisper_model.config.d_model  # Model's hidden size
        output_dim = 2  # Number of classes or output features for the new head

        config = self.whisper_model.config
        # add additional decoder block using the existing Whisper config
        self.additional_decoder_block = WhisperDecoderLayer(config)
        self.classifier = FCNN(input_dim, output_dim)
        # add weighted loss for CE
        neg_weight = 1.0
        pos_weight = 0.7 / 0.3
        class_weights = torch.tensor([neg_weight, pos_weight])
        self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100, weight=class_weights)
        self.layer_for_head = -1 if layer_for_head is None else layer_for_head

    def to(self, device: str = ("cuda" if torch.cuda.is_available() else "cpu")):
        self.whisper_model.to(device)
        self.additional_decoder_block.to(device)
        self.classifier.to(device)
        super().to(device)
        return self

    def load_model(self, save_dir=None):
        # load only the classifier and extra decoder layer (saved locally)
        if save_dir is not None:
            print('loading model from:', save_dir)
            device = "cuda" if torch.cuda.is_available() else "cpu"
            self.classifier.load_state_dict(
                torch.load(
                    os.path.join(save_dir, "classifier.pt"),
                    weights_only=False,
                    map_location=torch.device(device),
                )
            )
            self.additional_decoder_block.load_state_dict(
                torch.load(
                    os.path.join(save_dir, "additional_decoder_block.pt"),
                    weights_only=False,
                    map_location=torch.device(device),
                )
            )
            # read and load the layer_for_head.json
            # the json format is {"layer_for_head": 9}
            with open(os.path.join(save_dir, "metadata.json"), "r") as f:
                metadata = json.load(f)
                self.layer_for_head = metadata["layer_for_head"]
        return

    def train(self, mode: Optional[bool] = True):
        # freeze whisper and train classifier
        self.whisper_model.eval()
        # mark whisper model requires grad false
        for param in self.whisper_model.parameters():
            param.requires_grad = False
        for param in self.additional_decoder_block.parameters():
            param.requires_grad = True
        for param in self.classifier.parameters():
            param.requires_grad = True
        self.additional_decoder_block.train()
        self.classifier.train()

    def eval(self):
        self.whisper_model.eval()
        self.additional_decoder_block.eval()
        self.classifier.eval()

    def forward(
        self,
        input_features,
        attention_mask=None,
        decoder_input_ids=None,
        labels_head=None,
        whisper_labels=None,
    ):
        device = "cuda" if torch.cuda.is_available() else "cpu"
        self.whisper_model.eval()

        # pass the inputs through the model
        backbone_outputs = self.whisper_model(
            input_features=input_features,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            output_hidden_states=True,
            labels=whisper_labels,
        )

        # Extract the hidden states of the last layer of the decoder
        decoder_last_layer_hidden_states = backbone_outputs.decoder_hidden_states[
            self.layer_for_head
        ].to(device)

        # Extract the hidden states of the layer of the encoder who encapsulates best the prosodic features
        layer_for_head_hidden_states = backbone_outputs.encoder_hidden_states[
            self.layer_for_head
        ].to(device)
        # Pass the decoder last hidden layers through the new head (decoder_block + lin cls)

        additional_decoder_block_outputs = self.additional_decoder_block(
            hidden_states=decoder_last_layer_hidden_states,
            encoder_hidden_states=layer_for_head_hidden_states,
        )
        head_logits = self.classifier(additional_decoder_block_outputs[0].to(device))

        # calculate softmax
        head_probs = F.softmax(head_logits, dim=-1)
        preds = head_probs.argmax(dim=-1).to(device)
        if labels_head is not None:
            preds = torch.where(
                torch.isin(
                    labels_head, torch.tensor(list([-100])).to(device)  # 50257, 50362,
                ),
                torch.tensor(-100),
                preds,
            )
        # Calculate custom loss if labels are provided
        loss = None
        if labels_head is not None:
            # CrossEntropyLoss for the custom head
            loss = self.loss_fct(
                head_logits.reshape(-1, head_logits.size(-1)), labels_head.reshape(-1)
            )
        return CustomModelOutput(
            logits=head_logits,
            labels_head=labels_head,
            whisper_logits=backbone_outputs.logits,
            loss=loss,
            preds=preds,
        )

    def generate(
        self,
        input_features,
        max_length=128,
        labels_head=None,
        whisper_labels=None,
        **generate_kwargs,
    ):
        """
        Generate both the Whisper output and custom head output sequences in alignment.
        """
        device = "cuda" if torch.cuda.is_available() else "cpu"
        # Generate the Whisper output sequence
        whisper_outputs = self.whisper_model.generate(
            input_features=input_features,
            max_length=max_length,
            labels=whisper_labels,
            do_sample=False,
            **generate_kwargs,
        )

        # pass the inputs through the model
        backbone_outputs = self.whisper_model(
            input_features=input_features,
            decoder_input_ids=whisper_outputs,
            output_hidden_states=True,
        )

        # Extract the hidden states of the last layer of the decoder
        decoder_last_layer_hidden_states = backbone_outputs.decoder_hidden_states[
            self.layer_for_head
        ].to(device)

        # Extract the hidden states of the last layer of the encoder
        layer_for_head_hidden_states = backbone_outputs.encoder_hidden_states[
            self.layer_for_head
        ].to(device)
        # Pass the decoder last hidden layers through the new head (decoder_block + lin cls)

        additional_decoder_block_outputs = self.additional_decoder_block(
            hidden_states=decoder_last_layer_hidden_states,
            encoder_hidden_states=layer_for_head_hidden_states,
        )
        head_logits = self.classifier(additional_decoder_block_outputs[0].to(device))
        # calculate softmax
        head_probs = F.softmax(head_logits, dim=-1)
        preds = head_probs.argmax(dim=-1).to(device)
        preds = torch.where(
            torch.isin(
                whisper_outputs, torch.tensor(list([50256])).to(device)  # 50257, 50362,
            ),
            torch.tensor(-100),
            preds,
        )
        # preds_shifted = torch.cat((preds[:, 1:], preds[:, :1]), dim=1)
        return preds

    def generate_dual(
        self,
        input_features,
        attention_mask=None,
        max_length=200,
        labels_head=None,
        whisper_labels=None,
        **generate_kwargs,
    ):
        """
        Generate both the Whisper output and custom head output sequences in alignment.
        """
        device = "cuda" if torch.cuda.is_available() else "cpu"
        # Generate the Whisper output sequence
        whisper_outputs = self.whisper_model.generate(
            input_features=input_features,
            attention_mask=attention_mask,
            max_length=max_length,
            labels=whisper_labels,
            return_dict_in_generate=True,
            **generate_kwargs,
        )

        # pass the inputs through the model
        backbone_outputs = self.whisper_model(
            input_features=input_features,
            attention_mask=attention_mask,
            decoder_input_ids=whisper_outputs.sequences,
            output_hidden_states=True,
        )

        # Extract the hidden states of the last layer of the decoder
        decoder_last_layer_hidden_states = backbone_outputs.decoder_hidden_states[
            self.layer_for_head
        ].to(device)

        # Extract the hidden states of the last layer of the encoder
        layer_for_head_hidden_states = backbone_outputs.encoder_hidden_states[
            self.layer_for_head
        ].to(device)
        # Pass the decoder last hidden layers through the new head (decoder_block + lin cls)

        additional_decoder_block_outputs = self.additional_decoder_block(
            hidden_states=decoder_last_layer_hidden_states,
            encoder_hidden_states=layer_for_head_hidden_states,
        )
        head_logits = self.classifier(additional_decoder_block_outputs[0].to(device))
        head_probs = F.softmax(head_logits, dim=-1)
        preds = head_probs.argmax(dim=-1).to(device)
        preds = torch.where(
            torch.isin(
                whisper_outputs.sequences, torch.tensor(list([50256])).to(device)  # 50257, 50362,
            ),
            torch.tensor(-100),
            preds,
        )
        return CustomModelOutput(
            logits=head_logits,
            head_preds=preds,
            whisper_logits=whisper_outputs.logits,
            preds=whisper_outputs.sequences
        )

    def __str__(self):
        return "WhiStress"