File size: 10,482 Bytes
14cb7ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# models/price_analysis.py

import re
from .model_loader import load_model
from .logging_config import logger

def analyze_price(data):
    try:
        # Safely convert price to float
        price_str = str(data.get('market_value', '0')).replace('$', '').replace(',', '').strip()
        price = float(price_str) if price_str else 0
        
        # Safely convert sq_ft to float
        sq_ft_str = str(data.get('sq_ft', '0')).replace(',', '').strip()
        sq_ft = float(re.sub(r'[^\d.]', '', sq_ft_str)) if sq_ft_str else 0
        
        price_per_sqft = price / sq_ft if sq_ft else 0

        if not price:
            return {
                'assessment': 'no price',
                'confidence': 0.0,
                'price': 0,
                'formatted_price': '₹0',
                'price_per_sqft': 0,
                'formatted_price_per_sqft': '₹0',
                'price_range': 'unknown',
                'location_price_assessment': 'cannot assess',
                'has_price': False,
                'market_trends': {},
                'price_factors': {},
                'risk_indicators': []
            }

        # Use a more sophisticated model for price analysis
        classifier = load_model("zero-shot-classification", "typeform/mobilebert-uncased-mnli")

        # Create a detailed context for price analysis
        price_context = f"""
        Property Type: {data.get('property_type', '')}
        Location: {data.get('city', '')}, {data.get('state', '')}
        Size: {sq_ft} sq.ft.
        Price: ₹{price:,.2f}
        Price per sq.ft.: ₹{price_per_sqft:,.2f}
        Property Status: {data.get('status', '')}
        Year Built: {data.get('year_built', '')}
        Bedrooms: {data.get('bedrooms', '')}
        Bathrooms: {data.get('bathrooms', '')}
        Amenities: {data.get('amenities', '')}
        """

        # Enhanced price categories with more specific indicators
        price_categories = [
            "reasonable market price",
            "suspiciously low price",
            "suspiciously high price",
            "average market price",
            "luxury property price",
            "budget property price",
            "premium property price",
            "mid-range property price",
            "overpriced for location",
            "underpriced for location",
            "price matches amenities",
            "price matches property age",
            "price matches location value",
            "price matches property condition",
            "price matches market trends"
        ]

        # Analyze price with multiple aspects
        price_result = classifier(price_context, price_categories, multi_label=True)

        # Get top classifications with enhanced confidence calculation
        top_classifications = []
        for label, score in zip(price_result['labels'][:5], price_result['scores'][:5]):
            if score > 0.25:  # Lower threshold for better sensitivity
                top_classifications.append({
                    'classification': label,
                    'confidence': float(score)
                })

        # Determine price range based on AI classification and market data
        price_range = 'unknown'
        if top_classifications:
            primary_class = top_classifications[0]['classification']
            if 'luxury' in primary_class:
                price_range = 'luxury'
            elif 'premium' in primary_class:
                price_range = 'premium'
            elif 'mid-range' in primary_class:
                price_range = 'mid_range'
            elif 'budget' in primary_class:
                price_range = 'budget'

        # Enhanced location-specific price assessment
        location_assessment = "unknown"
        market_trends = {}
        if data.get('city') and price_per_sqft:
            city_lower = data['city'].lower()
            metro_cities = ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]

            # Define price ranges for different city tiers
            if any(city in city_lower for city in metro_cities):
                market_trends = {
                    'city_tier': 'metro',
                    'avg_price_range': {
                        'min': 5000,
                        'max': 30000,
                        'trend': 'stable'
                    },
                    'price_per_sqft': {
                        'current': price_per_sqft,
                        'market_avg': 15000,
                        'deviation': abs(price_per_sqft - 15000) / 15000 * 100
                    }
                }
                location_assessment = (
                    "reasonable" if 5000 <= price_per_sqft <= 30000 else
                    "suspiciously low" if price_per_sqft < 5000 else
                    "suspiciously high"
                )
            else:
                market_trends = {
                    'city_tier': 'non-metro',
                    'avg_price_range': {
                        'min': 1500,
                        'max': 15000,
                        'trend': 'stable'
                    },
                    'price_per_sqft': {
                        'current': price_per_sqft,
                        'market_avg': 7500,
                        'deviation': abs(price_per_sqft - 7500) / 7500 * 100
                    }
                }
                location_assessment = (
                    "reasonable" if 1500 <= price_per_sqft <= 15000 else
                    "suspiciously low" if price_per_sqft < 1500 else
                    "suspiciously high"
                )

        # Enhanced price analysis factors
        price_factors = {}
        risk_indicators = []

        # Property age factor
        try:
            year_built = int(data.get('year_built', 0))
            current_year = datetime.now().year
            property_age = current_year - year_built

            if property_age > 0:
                depreciation_factor = max(0.5, 1 - (property_age * 0.01))  # 1% depreciation per year, min 50%
                price_factors['age_factor'] = {
                    'property_age': property_age,
                    'depreciation_factor': depreciation_factor,
                    'impact': 'high' if property_age > 30 else 'medium' if property_age > 15 else 'low'
                }
        except:
            price_factors['age_factor'] = {'error': 'Invalid year built'}

        # Size factor
        if sq_ft > 0:
            size_factor = {
                'size': sq_ft,
                'price_per_sqft': price_per_sqft,
                'efficiency': 'high' if 800 <= sq_ft <= 2000 else 'medium' if 500 <= sq_ft <= 3000 else 'low'
            }
            price_factors['size_factor'] = size_factor

            # Add risk indicators based on size
            if sq_ft < 300:
                risk_indicators.append('Unusually small property size')
            elif sq_ft > 10000:
                risk_indicators.append('Unusually large property size')

        # Amenities factor
        if data.get('amenities'):
            amenities_list = [a.strip() for a in data['amenities'].split(',')]
            amenities_score = min(1.0, len(amenities_list) * 0.1)  # 10% per amenity, max 100%
            price_factors['amenities_factor'] = {
                'count': len(amenities_list),
                'score': amenities_score,
                'impact': 'high' if amenities_score > 0.7 else 'medium' if amenities_score > 0.4 else 'low'
            }

        # Calculate overall confidence with weighted factors
        confidence_weights = {
            'primary_classification': 0.3,
            'location_assessment': 0.25,
            'age_factor': 0.2,
            'size_factor': 0.15,
            'amenities_factor': 0.1
        }
        confidence_scores = []

        # Primary classification confidence
        if top_classifications:
            confidence_scores.append(price_result['scores'][0] * confidence_weights['primary_classification'])

        # Location assessment confidence
        location_confidence = 0.8 if location_assessment == "reasonable" else 0.4
        confidence_scores.append(location_confidence * confidence_weights['location_assessment'])

        # Age factor confidence
        if 'age_factor' in price_factors and 'depreciation_factor' in price_factors['age_factor']:
            age_confidence = price_factors['age_factor']['depreciation_factor']
            confidence_scores.append(age_confidence * confidence_weights['age_factor'])

        # Size factor confidence
        if 'size_factor' in price_factors:
            size_confidence = 0.8 if price_factors['size_factor']['efficiency'] == 'high' else 0.6
            confidence_scores.append(size_confidence * confidence_weights['size_factor'])

        # Amenities factor confidence
        if 'amenities_factor' in price_factors:
            amenities_confidence = price_factors['amenities_factor']['score']
            confidence_scores.append(amenities_confidence * confidence_weights['amenities_factor'])

        overall_confidence = sum(confidence_scores) / sum(confidence_weights.values())

        return {
            'assessment': top_classifications[0]['classification'] if top_classifications else 'could not classify',
            'confidence': float(overall_confidence),
            'price': price,
            'formatted_price': f"₹{price:,.0f}",
            'price_per_sqft': price_per_sqft,
            'formatted_price_per_sqft': f"₹{price_per_sqft:,.2f}",
            'price_range': price_range,
            'location_price_assessment': location_assessment,
            'has_price': True,
            'market_trends': market_trends,
            'price_factors': price_factors,
            'risk_indicators': risk_indicators,
            'top_classifications': top_classifications
        }
    except Exception as e:
        logger.error(f"Error analyzing price: {str(e)}")
        return {
            'assessment': 'error',
            'confidence': 0.0,
            'price': 0,
            'formatted_price': '₹0',
            'price_per_sqft': 0,
            'formatted_price_per_sqft': '₹0',
            'price_range': 'unknown',
            'location_price_assessment': 'error',
            'has_price': False,
            'market_trends': {},
            'price_factors': {},
            'risk_indicators': [],
            'top_classifications': []
        }