File size: 14,506 Bytes
14cb7ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# models/market_value.py
from datetime import datetime
from .logging_config import logger
def analyze_market_value(data):
"""
Analyzes the market value of a property based on its specifications and location
for the Indian real estate market.
"""
specs_verification = {
'is_valid': True,
'bedrooms_reasonable': True,
'bathrooms_reasonable': True,
'total_rooms_reasonable': True,
'parking_reasonable': True,
'sq_ft_reasonable': True,
'market_value_reasonable': True,
'year_built_reasonable': True, # Added missing field
'issues': []
}
try:
# Validate property type
valid_property_types = [
'Apartment', 'House', 'Villa', 'Independent House', 'Independent Villa',
'Studio', 'Commercial', 'Office', 'Shop', 'Warehouse', 'Industrial'
]
if 'property_type' not in data or data['property_type'] not in valid_property_types:
specs_verification['is_valid'] = False
specs_verification['issues'].append(f"Invalid property type: {data.get('property_type', 'Not specified')}")
# Validate bedrooms
if 'bedrooms' in data:
try:
bedrooms = int(data['bedrooms'])
if data['property_type'] in ['Apartment', 'Studio']:
if bedrooms > 5 or bedrooms < 0:
specs_verification['bedrooms_reasonable'] = False
specs_verification['issues'].append(f"Invalid number of bedrooms for {data['property_type']}: {bedrooms}. Should be between 0 and 5.")
elif data['property_type'] in ['House', 'Villa', 'Independent House', 'Independent Villa']:
if bedrooms > 8 or bedrooms < 0:
specs_verification['bedrooms_reasonable'] = False
specs_verification['issues'].append(f"Invalid number of bedrooms for {data['property_type']}: {bedrooms}. Should be between 0 and 8.")
elif data['property_type'] in ['Commercial', 'Office', 'Shop', 'Warehouse', 'Industrial']:
if bedrooms > 0:
specs_verification['bedrooms_reasonable'] = False
specs_verification['issues'].append(f"Commercial properties typically don't have bedrooms: {bedrooms}")
except ValueError:
specs_verification['bedrooms_reasonable'] = False
specs_verification['issues'].append("Invalid bedrooms data: must be a number")
# Validate bathrooms
if 'bathrooms' in data:
try:
bathrooms = float(data['bathrooms'])
if data['property_type'] in ['Apartment', 'Studio']:
if bathrooms > 4 or bathrooms < 0:
specs_verification['bathrooms_reasonable'] = False
specs_verification['issues'].append(f"Invalid number of bathrooms for {data['property_type']}: {bathrooms}. Should be between 0 and 4.")
elif data['property_type'] in ['House', 'Villa', 'Independent House', 'Independent Villa']:
if bathrooms > 6 or bathrooms < 0:
specs_verification['bathrooms_reasonable'] = False
specs_verification['issues'].append(f"Invalid number of bathrooms for {data['property_type']}: {bathrooms}. Should be between 0 and 6.")
elif data['property_type'] in ['Commercial', 'Office', 'Shop', 'Warehouse', 'Industrial']:
if bathrooms > 0:
specs_verification['bathrooms_reasonable'] = False
specs_verification['issues'].append(f"Commercial properties typically don't have bathrooms: {bathrooms}")
except ValueError:
specs_verification['bathrooms_reasonable'] = False
specs_verification['issues'].append("Invalid bathrooms data: must be a number")
# Validate total rooms
if 'total_rooms' in data:
try:
total_rooms = int(data['total_rooms'])
if total_rooms < 0:
specs_verification['total_rooms_reasonable'] = False
specs_verification['issues'].append(f"Invalid total rooms: {total_rooms}. Cannot be negative.")
elif 'bedrooms' in data and 'bathrooms' in data:
try:
bedrooms = int(data['bedrooms'])
bathrooms = int(float(data['bathrooms']))
if total_rooms < (bedrooms + bathrooms):
specs_verification['total_rooms_reasonable'] = False
specs_verification['issues'].append(f"Total rooms ({total_rooms}) is less than bedrooms + bathrooms ({bedrooms + bathrooms})")
except ValueError:
pass
except ValueError:
specs_verification['total_rooms_reasonable'] = False
specs_verification['issues'].append("Invalid total rooms data: must be a number")
# Validate parking
if 'parking' in data:
try:
parking = int(data['parking'])
if data['property_type'] in ['Apartment', 'Studio']:
if parking > 2 or parking < 0:
specs_verification['parking_reasonable'] = False
specs_verification['issues'].append(f"Invalid parking spaces for {data['property_type']}: {parking}. Should be between 0 and 2.")
elif data['property_type'] in ['House', 'Villa', 'Independent House', 'Independent Villa']:
if parking > 4 or parking < 0:
specs_verification['parking_reasonable'] = False
specs_verification['issues'].append(f"Invalid parking spaces for {data['property_type']}: {parking}. Should be between 0 and 4.")
elif data['property_type'] in ['Commercial', 'Office', 'Shop', 'Warehouse', 'Industrial']:
if parking < 0:
specs_verification['parking_reasonable'] = False
specs_verification['issues'].append(f"Invalid parking spaces: {parking}. Cannot be negative.")
except ValueError:
specs_verification['parking_reasonable'] = False
specs_verification['issues'].append("Invalid parking data: must be a number")
# Validate square footage
if 'sq_ft' in data:
try:
sq_ft = float(data['sq_ft'].replace(',', ''))
if sq_ft <= 0:
specs_verification['sq_ft_reasonable'] = False
specs_verification['issues'].append(f"Invalid square footage: {sq_ft}. Must be greater than 0.")
else:
if data['property_type'] in ['Apartment', 'Studio']:
if sq_ft > 5000:
specs_verification['sq_ft_reasonable'] = False
specs_verification['issues'].append(f"Square footage ({sq_ft}) seems unreasonably high for {data['property_type']}")
elif sq_ft < 200:
specs_verification['sq_ft_reasonable'] = False
specs_verification['issues'].append(f"Square footage ({sq_ft}) seems unreasonably low for {data['property_type']}")
elif data['property_type'] in ['House', 'Villa', 'Independent House', 'Independent Villa']:
if sq_ft > 10000:
specs_verification['sq_ft_reasonable'] = False
specs_verification['issues'].append(f"Square footage ({sq_ft}) seems unreasonably high for {data['property_type']}")
elif sq_ft < 500:
specs_verification['sq_ft_reasonable'] = False
specs_verification['issues'].append(f"Square footage ({sq_ft}) seems unreasonably low for {data['property_type']}")
except ValueError:
specs_verification['sq_ft_reasonable'] = False
specs_verification['issues'].append("Invalid square footage data: must be a number")
# Validate market value
if 'market_value' in data:
try:
market_value = float(data['market_value'].replace(',', '').replace('₹', '').strip())
if market_value <= 0:
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Invalid market value: {market_value}. Must be greater than 0.")
else:
if data['property_type'] in ['Apartment', 'Studio']:
if market_value > 500000000: # 5 crore limit for apartments
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Market value (₹{market_value:,.2f}) seems unreasonably high for {data['property_type']}")
elif market_value < 500000: # 5 lakh minimum
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Market value (₹{market_value:,.2f}) seems unreasonably low for {data['property_type']}")
elif data['property_type'] in ['House', 'Villa', 'Independent House', 'Independent Villa']:
if market_value > 2000000000: # 20 crore limit for houses
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Market value (₹{market_value:,.2f}) seems unreasonably high for {data['property_type']}")
elif market_value < 1000000: # 10 lakh minimum
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Market value (₹{market_value:,.2f}) seems unreasonably low for {data['property_type']}")
elif data['property_type'] in ['Commercial', 'Office', 'Shop']:
if market_value < 2000000: # 20 lakh minimum
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Market value (₹{market_value:,.2f}) seems unreasonably low for {data['property_type']}")
elif data['property_type'] in ['Warehouse', 'Industrial']:
if market_value < 5000000: # 50 lakh minimum
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Market value (₹{market_value:,.2f}) seems unreasonably low for {data['property_type']}")
# Check price per square foot
if 'sq_ft' in data and float(data['sq_ft'].replace(',', '')) > 0:
try:
sq_ft = float(data['sq_ft'].replace(',', ''))
price_per_sqft = market_value / sq_ft
if data['property_type'] in ['Apartment', 'Studio']:
if price_per_sqft < 1000: # Less than ₹1000 per sq ft
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Price per sq ft (₹{price_per_sqft:,.2f}) seems unreasonably low for {data['property_type']}")
elif price_per_sqft > 50000: # More than ₹50k per sq ft
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Price per sq ft (₹{price_per_sqft:,.2f}) seems unreasonably high for {data['property_type']}")
elif data['property_type'] in ['House', 'Villa', 'Independent House', 'Independent Villa']:
if price_per_sqft < 500: # Less than ₹500 per sq ft
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Price per sq ft (₹{price_per_sqft:,.2f}) seems unreasonably low for {data['property_type']}")
elif price_per_sqft > 100000: # More than ₹1 lakh per sq ft
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append(f"Price per sq ft (₹{price_per_sqft:,.2f}) seems unreasonably high for {data['property_type']}")
except ValueError:
pass
except ValueError:
specs_verification['market_value_reasonable'] = False
specs_verification['issues'].append("Invalid market value data: must be a number")
# Calculate verification score
valid_checks = sum([
specs_verification['bedrooms_reasonable'],
specs_verification['bathrooms_reasonable'],
specs_verification['total_rooms_reasonable'],
specs_verification['year_built_reasonable'],
specs_verification['parking_reasonable'],
specs_verification['sq_ft_reasonable'],
specs_verification['market_value_reasonable']
])
total_checks = 7
specs_verification['verification_score'] = (valid_checks / total_checks) * 100
# Overall validity
specs_verification['is_valid'] = all([
specs_verification['bedrooms_reasonable'],
specs_verification['bathrooms_reasonable'],
specs_verification['total_rooms_reasonable'],
specs_verification['year_built_reasonable'],
specs_verification['parking_reasonable'],
specs_verification['sq_ft_reasonable'],
specs_verification['market_value_reasonable']
])
except Exception as e:
logger.error(f"Error in property specs verification: {str(e)}")
specs_verification['is_valid'] = False
specs_verification['issues'].append(f"Error in verification: {str(e)}")
return specs_verification
|