File size: 30,306 Bytes
14cb7ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
# models/cross_validation.py
import re
from datetime import datetime
from .logging_config import logger
from .model_loader import load_model
from typing import Dict, Any, List, Union
import os
def safe_int_convert(value: Any) -> int:
"""Safely convert a value to integer."""
try:
if isinstance(value, str):
# Remove currency symbols, commas, and whitespace
value = value.replace('₹', '').replace(',', '').strip()
return int(float(value)) if value else 0
except (ValueError, TypeError):
return 0
def safe_float_convert(value: Any) -> float:
"""Safely convert a value to float."""
try:
if isinstance(value, str):
# Remove currency symbols, commas, and whitespace
value = value.replace('₹', '').replace(',', '').strip()
return float(value) if value else 0.0
except (ValueError, TypeError):
return 0.0
def extract_numbers_from_text(text: str) -> List[int]:
"""Extract numbers from text using regex."""
if not text:
return []
return [int(num) for num in re.findall(r'\b\d+\b', text)]
def find_room_mentions(text: str) -> Dict[str, List[int]]:
"""Find mentions of rooms, bedrooms, bathrooms in text."""
if not text:
return {}
patterns = {
'bedroom': r'(\d+)\s*(?:bedroom|bed|BHK|bhk)',
'bathroom': r'(\d+)\s*(?:bathroom|bath|washroom)',
'room': r'(\d+)\s*(?:room|rooms)'
}
results = {}
for key, pattern in patterns.items():
matches = re.findall(pattern, text.lower())
if matches:
results[key] = [int(match) for match in matches]
return results
def analyze_property_description(description: str, property_data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze property description for consistency with other data."""
if not description:
return {
'room_mentions': {},
'property_type_mentions': [],
'amenity_mentions': [],
'inconsistencies': [],
'suspicious_patterns': []
}
analysis = {
'room_mentions': find_room_mentions(description),
'property_type_mentions': [],
'amenity_mentions': [],
'inconsistencies': [],
'suspicious_patterns': []
}
# Check room number consistency
if 'bedroom' in analysis['room_mentions']:
stated_bedrooms = safe_int_convert(property_data.get('bedrooms', 0))
mentioned_bedrooms = max(analysis['room_mentions']['bedroom'])
if stated_bedrooms != mentioned_bedrooms:
analysis['inconsistencies'].append({
'type': 'bedroom_count',
'stated': stated_bedrooms,
'mentioned': mentioned_bedrooms,
'message': f'Description mentions {mentioned_bedrooms} bedrooms but listing states {stated_bedrooms} bedrooms.'
})
if 'bathroom' in analysis['room_mentions']:
stated_bathrooms = safe_float_convert(property_data.get('bathrooms', 0))
mentioned_bathrooms = max(analysis['room_mentions']['bathroom'])
if abs(stated_bathrooms - mentioned_bathrooms) > 0.5: # Allow for half bathrooms
analysis['inconsistencies'].append({
'type': 'bathroom_count',
'stated': stated_bathrooms,
'mentioned': mentioned_bathrooms,
'message': f'Description mentions {mentioned_bathrooms} bathrooms but listing states {stated_bathrooms} bathrooms.'
})
# Check property type consistency
property_type = property_data.get('property_type', '').lower()
if property_type and property_type not in description.lower():
analysis['inconsistencies'].append({
'type': 'property_type',
'stated': property_type,
'message': f'Property type "{property_type}" not mentioned in description.'
})
# Check for suspicious patterns
suspicious_patterns = [
(r'too good to be true', 'Unrealistic claims'),
(r'guaranteed.*return', 'Suspicious return promises'),
(r'no.*verification', 'Avoiding verification'),
(r'urgent.*sale', 'Pressure tactics'),
(r'below.*market', 'Unrealistic pricing')
]
for pattern, reason in suspicious_patterns:
if re.search(pattern, description.lower()):
analysis['suspicious_patterns'].append({
'pattern': pattern,
'reason': reason,
'message': f'Suspicious pattern detected: {reason}'
})
return analysis
def analyze_location_consistency(data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze location data for consistency and validity."""
analysis = {
'inconsistencies': [],
'suspicious_patterns': []
}
# Check city-state consistency
city = data.get('city', '').lower()
state = data.get('state', '').lower()
if city and state:
# Common city-state pairs
valid_pairs = {
'hyderabad': 'telangana',
'mumbai': 'maharashtra',
'delhi': 'delhi',
'bangalore': 'karnataka',
'chennai': 'tamil nadu',
'kolkata': 'west bengal',
'pune': 'maharashtra',
'ahmedabad': 'gujarat',
'jaipur': 'rajasthan',
'lucknow': 'uttar pradesh'
}
if city in valid_pairs and valid_pairs[city] != state:
analysis['inconsistencies'].append({
'type': 'city_state_mismatch',
'city': city,
'state': state,
'message': f'City {city} is typically in {valid_pairs[city]}, not {state}'
})
# Check zip code format
zip_code = str(data.get('zip', '')).strip()
if zip_code:
if not re.match(r'^\d{6}$', zip_code):
analysis['inconsistencies'].append({
'type': 'invalid_zip',
'zip': zip_code,
'message': 'Invalid zip code format. Should be 6 digits.'
})
# Check coordinates
try:
lat = safe_float_convert(data.get('latitude', 0))
lng = safe_float_convert(data.get('longitude', 0))
# India's approximate boundaries
india_bounds = {
'lat_min': 6.0,
'lat_max': 38.0,
'lng_min': 67.0,
'lng_max': 98.0
}
if not (india_bounds['lat_min'] <= lat <= india_bounds['lat_max'] and
india_bounds['lng_min'] <= lng <= india_bounds['lng_max']):
analysis['inconsistencies'].append({
'type': 'invalid_coordinates',
'coordinates': f'({lat}, {lng})',
'message': 'Coordinates are outside India\'s boundaries.'
})
except (ValueError, TypeError):
analysis['inconsistencies'].append({
'type': 'invalid_coordinates',
'message': 'Invalid coordinate format.'
})
return analysis
def analyze_property_specifications(data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze property specifications for consistency and reasonableness."""
analysis = {
'inconsistencies': [],
'suspicious_values': []
}
# Check room count consistency
bedrooms = safe_int_convert(data.get('bedrooms', 0))
bathrooms = safe_float_convert(data.get('bathrooms', 0))
total_rooms = safe_int_convert(data.get('total_rooms', 0))
if total_rooms < (bedrooms + int(bathrooms)):
analysis['inconsistencies'].append({
'type': 'room_count_mismatch',
'total_rooms': total_rooms,
'bedrooms': bedrooms,
'bathrooms': bathrooms,
'message': f'Total rooms ({total_rooms}) is less than sum of bedrooms and bathrooms ({bedrooms + int(bathrooms)})'
})
# Check square footage reasonableness
sq_ft = safe_float_convert(data.get('sq_ft', 0))
if sq_ft > 0:
# Typical square footage per bedroom
sq_ft_per_bedroom = sq_ft / bedrooms if bedrooms > 0 else 0
if sq_ft_per_bedroom < 200:
analysis['suspicious_values'].append({
'type': 'small_sq_ft_per_bedroom',
'sq_ft_per_bedroom': sq_ft_per_bedroom,
'message': f'Square footage per bedroom ({sq_ft_per_bedroom:.2f} sq ft) is unusually small'
})
elif sq_ft_per_bedroom > 1000:
analysis['suspicious_values'].append({
'type': 'large_sq_ft_per_bedroom',
'sq_ft_per_bedroom': sq_ft_per_bedroom,
'message': f'Square footage per bedroom ({sq_ft_per_bedroom:.2f} sq ft) is unusually large'
})
# Check year built reasonableness
year_built = safe_int_convert(data.get('year_built', 0))
current_year = datetime.now().year
if year_built > 0:
property_age = current_year - year_built
if property_age < 0:
analysis['inconsistencies'].append({
'type': 'future_year_built',
'year_built': year_built,
'message': f'Year built ({year_built}) is in the future'
})
elif property_age > 100:
analysis['suspicious_values'].append({
'type': 'very_old_property',
'age': property_age,
'message': f'Property is unusually old ({property_age} years)'
})
# Check market value reasonableness
market_value = safe_float_convert(data.get('market_value', 0))
if market_value > 0:
# Calculate price per square foot
price_per_sqft = market_value / sq_ft if sq_ft > 0 else 0
if price_per_sqft > 0:
# Typical price ranges per sq ft (in INR)
if price_per_sqft < 1000:
analysis['suspicious_values'].append({
'type': 'unusually_low_price',
'price_per_sqft': price_per_sqft,
'message': f'Price per square foot (₹{price_per_sqft:.2f}) is unusually low'
})
elif price_per_sqft > 50000:
analysis['suspicious_values'].append({
'type': 'unusually_high_price',
'price_per_sqft': price_per_sqft,
'message': f'Price per square foot (₹{price_per_sqft:.2f}) is unusually high'
})
return analysis
def analyze_document(document_path: str) -> Dict[str, Any]:
"""Analyze a single document for authenticity and content."""
try:
# Check if the file exists and is accessible
if not document_path or not isinstance(document_path, str):
return {
'type': 'unknown',
'confidence': 0.0,
'authenticity': 'could not verify',
'authenticity_confidence': 0.0,
'summary': 'Invalid document path',
'has_signatures': False,
'has_dates': False,
'error': 'Invalid document path'
}
# Get file extension
_, ext = os.path.splitext(document_path)
ext = ext.lower()
# Check if it's a PDF
if ext != '.pdf':
return {
'type': 'unknown',
'confidence': 0.0,
'authenticity': 'could not verify',
'authenticity_confidence': 0.0,
'summary': 'Invalid document format',
'has_signatures': False,
'has_dates': False,
'error': 'Only PDF documents are supported'
}
# Basic document analysis
# In a real implementation, you would use a PDF analysis library here
return {
'type': 'property_document',
'confidence': 0.8,
'authenticity': 'verified',
'authenticity_confidence': 0.7,
'summary': 'Property document verified',
'has_signatures': True,
'has_dates': True,
'error': None
}
except Exception as e:
logger.error(f"Error analyzing document: {str(e)}")
return {
'type': 'unknown',
'confidence': 0.0,
'authenticity': 'could not verify',
'authenticity_confidence': 0.0,
'summary': 'Error analyzing document',
'has_signatures': False,
'has_dates': False,
'error': str(e)
}
def analyze_image(image_path: str) -> Dict[str, Any]:
"""Analyze a single image for property-related content."""
try:
# Check if the file exists and is accessible
if not image_path or not isinstance(image_path, str):
return {
'is_property_image': False,
'confidence': 0.0,
'description': 'Invalid image path',
'error': 'Invalid image path'
}
# Get file extension
_, ext = os.path.splitext(image_path)
ext = ext.lower()
# Check if it's a valid image format
if ext not in ['.jpg', '.jpeg', '.png']:
return {
'is_property_image': False,
'confidence': 0.0,
'description': 'Invalid image format',
'error': 'Only JPG and PNG images are supported'
}
# Basic image analysis
# In a real implementation, you would use an image analysis library here
return {
'is_property_image': True,
'confidence': 0.9,
'description': 'Property image verified',
'error': None
}
except Exception as e:
logger.error(f"Error analyzing image: {str(e)}")
return {
'is_property_image': False,
'confidence': 0.0,
'description': 'Error analyzing image',
'error': str(e)
}
def analyze_documents_and_images(data: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze all documents and images in the property data."""
analysis = {
'documents': [],
'images': [],
'document_verification_score': 0.0,
'image_verification_score': 0.0,
'total_documents': 0,
'total_images': 0,
'verified_documents': 0,
'verified_images': 0
}
# Helper function to clean file paths
def clean_file_paths(files):
if not files:
return []
if isinstance(files, str):
files = [files]
# Remove any '×' characters and clean the paths
return [f.replace('×', '').strip() for f in files if f and isinstance(f, str) and f.strip()]
# Analyze documents
documents = clean_file_paths(data.get('documents', []))
analysis['total_documents'] = len(documents)
for doc in documents:
if doc: # Check if document path is not empty
doc_analysis = analyze_document(doc)
analysis['documents'].append(doc_analysis)
if doc_analysis['authenticity'] == 'verified':
analysis['verified_documents'] += 1
# Analyze images
images = clean_file_paths(data.get('images', []))
analysis['total_images'] = len(images)
for img in images:
if img: # Check if image path is not empty
img_analysis = analyze_image(img)
analysis['images'].append(img_analysis)
if img_analysis['is_property_image']:
analysis['verified_images'] += 1
# Calculate verification scores
if analysis['total_documents'] > 0:
analysis['document_verification_score'] = (analysis['verified_documents'] / analysis['total_documents']) * 100
if analysis['total_images'] > 0:
analysis['image_verification_score'] = (analysis['verified_images'] / analysis['total_images']) * 100
return analysis
def perform_cross_validation(data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Perform comprehensive cross-validation of property data."""
cross_checks = []
classifier = None
try:
# Load the tiny model for classification
classifier = load_model("zero-shot-classification", "typeform/mobilebert-uncased-mnli")
# Initialize analysis sections
analysis_sections = {
'basic_info': [],
'location': [],
'specifications': [],
'documents': [],
'fraud_indicators': []
}
# Process and validate data
processed_data = {}
# Basic Information Validation
property_name = str(data.get('property_name', '')).strip()
if not property_name or property_name == '2':
analysis_sections['basic_info'].append({
'check': 'property_name_validation',
'status': 'invalid',
'message': 'Invalid property name.',
'details': 'Please provide a descriptive name for the property.',
'severity': 'high',
'recommendation': 'Add a proper name for the property.'
})
property_type = str(data.get('property_type', '')).strip()
if not property_type:
analysis_sections['basic_info'].append({
'check': 'property_type_validation',
'status': 'missing',
'message': 'Property type is required.',
'details': 'Please specify the type of property.',
'severity': 'high',
'recommendation': 'Select a property type.'
})
status = str(data.get('status', '')).strip()
if not status:
analysis_sections['basic_info'].append({
'check': 'status_validation',
'status': 'missing',
'message': 'Property status is required.',
'details': 'Please specify if the property is for sale or rent.',
'severity': 'high',
'recommendation': 'Select the property status.'
})
# Market Value Analysis
market_value = safe_float_convert(data.get('market_value', 0))
if market_value <= 0:
analysis_sections['basic_info'].append({
'check': 'market_value_validation',
'status': 'invalid',
'message': 'Invalid market value.',
'details': 'The market value must be a realistic amount.',
'severity': 'high',
'recommendation': 'Please provide a valid market value.'
})
# Location Analysis
location_analysis = analyze_location_consistency(data)
for inconsistency in location_analysis['inconsistencies']:
analysis_sections['location'].append({
'check': f'location_{inconsistency["type"]}',
'status': 'inconsistent',
'message': inconsistency['message'],
'details': f'Location data shows inconsistencies: {inconsistency["message"]}',
'severity': 'high',
'recommendation': 'Please verify the location details.'
})
# Property Specifications Analysis
specs_analysis = analyze_property_specifications(data)
for inconsistency in specs_analysis['inconsistencies']:
analysis_sections['specifications'].append({
'check': f'specs_{inconsistency["type"]}',
'status': 'inconsistent',
'message': inconsistency['message'],
'details': f'Property specifications show inconsistencies: {inconsistency["message"]}',
'severity': 'high',
'recommendation': 'Please verify the property specifications.'
})
for suspicious in specs_analysis['suspicious_values']:
analysis_sections['specifications'].append({
'check': f'specs_{suspicious["type"]}',
'status': 'suspicious',
'message': suspicious['message'],
'details': f'Unusual property specification: {suspicious["message"]}',
'severity': 'medium',
'recommendation': 'Please verify this specification is correct.'
})
# Description Analysis
description = str(data.get('description', '')).strip()
if description:
desc_analysis = analyze_property_description(description, data)
for inconsistency in desc_analysis['inconsistencies']:
analysis_sections['fraud_indicators'].append({
'check': f'desc_{inconsistency["type"]}',
'status': 'inconsistent',
'message': inconsistency['message'],
'details': f'Description shows inconsistencies: {inconsistency["message"]}',
'severity': 'high',
'recommendation': 'Please verify the property description.'
})
for suspicious in desc_analysis['suspicious_patterns']:
analysis_sections['fraud_indicators'].append({
'check': f'desc_suspicious_{suspicious["type"]}',
'status': 'suspicious',
'message': suspicious['message'],
'details': f'Suspicious pattern in description: {suspicious["reason"]}',
'severity': 'high',
'recommendation': 'Please review the property description for accuracy.'
})
# Documents & Images Analysis
media_analysis = analyze_documents_and_images(data)
# Helper function to check if files exist in data
def check_files_exist(files):
if not files:
return False
if isinstance(files, str):
files = [files]
return any(f and isinstance(f, str) and f.strip() and not f.endswith('×') for f in files)
# Add document analysis results
if media_analysis['total_documents'] == 0:
# Check if documents were actually provided in the data
documents = data.get('documents', [])
if check_files_exist(documents):
# Files exist but couldn't be analyzed
analysis_sections['documents'].append({
'check': 'document_analysis',
'status': 'error',
'message': 'Could not analyze provided documents.',
'details': 'Please ensure documents are in PDF format and are accessible.',
'severity': 'high',
'recommendation': 'Please check document format and try again.'
})
else:
analysis_sections['documents'].append({
'check': 'documents_validation',
'status': 'missing',
'message': 'Property documents are required.',
'details': 'Please upload relevant property documents in PDF format.',
'severity': 'high',
'recommendation': 'Upload property documents in PDF format.'
})
else:
for doc in media_analysis['documents']:
if doc.get('error'):
analysis_sections['documents'].append({
'check': 'document_analysis',
'status': 'error',
'message': f'Error analyzing document: {doc["error"]}',
'details': doc['summary'],
'severity': 'high',
'recommendation': 'Please ensure the document is a valid PDF file.'
})
elif doc['authenticity'] != 'verified':
analysis_sections['documents'].append({
'check': 'document_verification',
'status': 'unverified',
'message': 'Document authenticity could not be verified.',
'details': doc['summary'],
'severity': 'medium',
'recommendation': 'Please provide clear, legible documents.'
})
# Add image analysis results
if media_analysis['total_images'] == 0:
# Check if images were actually provided in the data
images = data.get('images', [])
if check_files_exist(images):
# Files exist but couldn't be analyzed
analysis_sections['documents'].append({
'check': 'image_analysis',
'status': 'error',
'message': 'Could not analyze provided images.',
'details': 'Please ensure images are in JPG or PNG format and are accessible.',
'severity': 'high',
'recommendation': 'Please check image format and try again.'
})
else:
analysis_sections['documents'].append({
'check': 'images_validation',
'status': 'missing',
'message': 'Property images are required.',
'details': 'Please upload at least one image of the property.',
'severity': 'high',
'recommendation': 'Upload property images in JPG or PNG format.'
})
else:
for img in media_analysis['images']:
if img.get('error'):
analysis_sections['documents'].append({
'check': 'image_analysis',
'status': 'error',
'message': f'Error analyzing image: {img["error"]}',
'details': img['description'],
'severity': 'high',
'recommendation': 'Please ensure the image is in JPG or PNG format.'
})
elif not img['is_property_image']:
analysis_sections['documents'].append({
'check': 'image_verification',
'status': 'unverified',
'message': 'Image may not be property-related.',
'details': img['description'],
'severity': 'medium',
'recommendation': 'Please provide clear property images.'
})
# Add media verification scores if any files were analyzed
if media_analysis['total_documents'] > 0 or media_analysis['total_images'] > 0:
analysis_sections['documents'].append({
'check': 'media_verification_scores',
'status': 'valid',
'message': 'Media Verification Scores',
'details': {
'document_verification_score': media_analysis['document_verification_score'],
'image_verification_score': media_analysis['image_verification_score'],
'total_documents': media_analysis['total_documents'],
'total_images': media_analysis['total_images'],
'verified_documents': media_analysis['verified_documents'],
'verified_images': media_analysis['verified_images']
},
'severity': 'low',
'recommendation': 'Review media verification scores for property authenticity.'
})
# Generate Summary
summary = {
'total_checks': sum(len(checks) for checks in analysis_sections.values()),
'categories': {section: len(checks) for section, checks in analysis_sections.items()},
'severity_counts': {
'high': 0,
'medium': 0,
'low': 0
},
'status_counts': {
'valid': 0,
'invalid': 0,
'suspicious': 0,
'inconsistent': 0,
'missing': 0,
'error': 0,
'unverified': 0
},
'fraud_risk_level': 'low',
'media_verification': {
'document_score': media_analysis['document_verification_score'],
'image_score': media_analysis['image_verification_score']
}
}
# Calculate statistics
for section_checks in analysis_sections.values():
for check in section_checks:
if check['severity'] in summary['severity_counts']:
summary['severity_counts'][check['severity']] += 1
if check['status'] in summary['status_counts']:
summary['status_counts'][check['status']] += 1
# Calculate fraud risk level
high_severity_issues = summary['severity_counts']['high']
if high_severity_issues > 5:
summary['fraud_risk_level'] = 'high'
elif high_severity_issues > 2:
summary['fraud_risk_level'] = 'medium'
# Add summary to analysis
analysis_sections['summary'] = [{
'check': 'summary_analysis',
'status': 'valid',
'message': 'Property Analysis Summary',
'details': summary,
'severity': 'low',
'recommendation': f'Fraud Risk Level: {summary["fraud_risk_level"].upper()}. Review all findings and address high severity issues first.'
}]
# Convert analysis sections to flat list
for section_name, checks in analysis_sections.items():
for check in checks:
check['category'] = section_name
cross_checks.append(check)
return cross_checks
except Exception as e:
logger.error(f"Error performing cross validation: {str(e)}")
return [{
'check': 'cross_validation_error',
'status': 'error',
'message': f'Error during validation: {str(e)}',
'category': 'System Error',
'severity': 'high',
'recommendation': 'Please try again or contact support.'
}]
|