File size: 23,409 Bytes
14cb7ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
# app.py
from flask import Flask, render_template, request, jsonify
from flask_cors import CORS
import base64
import io
import re
import json
import uuid
import time
import asyncio
from geopy.geocoders import Nominatim
from datetime import datetime
from models.logging_config import logger
from models.model_loader import load_model
from models.image_analysis import analyze_image
from models.pdf_analysis import extract_pdf_text, analyze_pdf_content
from models.property_summary import generate_property_summary
from models.fraud_classification import classify_fraud
from models.trust_score import generate_trust_score
from models.suggestions import generate_suggestions
from models.text_quality import assess_text_quality
from models.address_verification import verify_address
from models.cross_validation import perform_cross_validation
from models.location_analysis import analyze_location
from models.price_analysis import analyze_price
from models.legal_analysis import analyze_legal_details
from models.property_specs import verify_property_specs
from models.market_value import analyze_market_value
from models.image_quality import assess_image_quality
from models.property_relation import check_if_property_related
import torch
import numpy as np
import concurrent.futures
from PIL import Image
app = Flask(__name__)
CORS(app) # Enable CORS for frontend
# Initialize geocoder
geocoder = Nominatim(user_agent="indian_property_verifier", timeout=10)
def make_json_serializable(obj):
try:
if isinstance(obj, (bool, int, float, str, type(None))):
return obj
elif isinstance(obj, (list, tuple)):
return [make_json_serializable(item) for item in obj]
elif isinstance(obj, dict):
return {str(key): make_json_serializable(value) for key, value in obj.items()}
elif torch.is_tensor(obj):
return obj.item() if obj.numel() == 1 else obj.tolist()
elif np.isscalar(obj):
return obj.item() if hasattr(obj, 'item') else float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return str(obj)
except Exception as e:
logger.error(f"Error serializing object: {str(e)}")
return str(obj)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/get-location', methods=['POST'])
def get_location():
try:
data = request.json or {}
latitude = data.get('latitude')
longitude = data.get('longitude')
if not latitude or not longitude:
logger.warning("Missing latitude or longitude")
return jsonify({
'status': 'error',
'message': 'Latitude and longitude are required'
}), 400
# Validate coordinates are within India
try:
lat, lng = float(latitude), float(longitude)
if not (6.5 <= lat <= 37.5 and 68.0 <= lng <= 97.5):
return jsonify({
'status': 'error',
'message': 'Coordinates are outside India'
}), 400
except ValueError:
return jsonify({
'status': 'error',
'message': 'Invalid coordinates format'
}), 400
# Retry geocoding up to 3 times
for attempt in range(3):
try:
location = geocoder.reverse((latitude, longitude), exactly_one=True)
if location:
address_components = location.raw.get('address', {})
# Extract Indian-specific address components
city = address_components.get('city', '')
if not city:
city = address_components.get('town', '')
if not city:
city = address_components.get('village', '')
if not city:
city = address_components.get('suburb', '')
state = address_components.get('state', '')
if not state:
state = address_components.get('state_district', '')
# Get postal code and validate Indian format
postal_code = address_components.get('postcode', '')
if postal_code and not re.match(r'^\d{6}$', postal_code):
postal_code = ''
# Get road/street name
road = address_components.get('road', '')
if not road:
road = address_components.get('street', '')
# Get area/locality
area = address_components.get('suburb', '')
if not area:
area = address_components.get('neighbourhood', '')
return jsonify({
'status': 'success',
'address': location.address,
'street': road,
'area': area,
'city': city,
'state': state,
'country': 'India',
'postal_code': postal_code,
'latitude': latitude,
'longitude': longitude,
'formatted_address': f"{road}, {area}, {city}, {state}, India - {postal_code}"
})
logger.warning(f"Geocoding failed on attempt {attempt + 1}")
time.sleep(1) # Wait before retry
except Exception as e:
logger.error(f"Geocoding error on attempt {attempt + 1}: {str(e)}")
time.sleep(1)
return jsonify({
'status': 'error',
'message': 'Could not determine location after retries'
}), 500
except Exception as e:
logger.error(f"Error in get_location: {str(e)}")
return jsonify({
'status': 'error',
'message': str(e)
}), 500
def calculate_final_verdict(results):
"""
Calculate a comprehensive final verdict based on all analysis results.
This function combines all verification scores, fraud indicators, and quality assessments
to determine if a property listing is legitimate, suspicious, or fraudulent.
"""
try:
# Initialize verdict components
verdict = {
'status': 'unknown',
'confidence': 0.0,
'score': 0.0,
'reasons': [],
'critical_issues': [],
'warnings': [],
'recommendations': []
}
# Extract key components from results
trust_score = results.get('trust_score', {}).get('score', 0)
fraud_classification = results.get('fraud_classification', {})
quality_assessment = results.get('quality_assessment', {})
specs_verification = results.get('specs_verification', {})
cross_validation = results.get('cross_validation', [])
location_analysis = results.get('location_analysis', {})
price_analysis = results.get('price_analysis', {})
legal_analysis = results.get('legal_analysis', {})
document_analysis = results.get('document_analysis', {})
image_analysis = results.get('image_analysis', {})
# Calculate component scores (0-100)
component_scores = {
'trust': trust_score,
'fraud': 100 - (fraud_classification.get('alert_score', 0) * 100),
'quality': quality_assessment.get('score', 0),
'specs': specs_verification.get('verification_score', 0),
'location': location_analysis.get('completeness_score', 0),
'price': price_analysis.get('confidence', 0) * 100 if price_analysis.get('has_price') else 0,
'legal': legal_analysis.get('completeness_score', 0),
'documents': min(100, (document_analysis.get('pdf_count', 0) / 3) * 100) if document_analysis.get('pdf_count') else 0,
'images': min(100, (image_analysis.get('image_count', 0) / 5) * 100) if image_analysis.get('image_count') else 0
}
# Calculate weighted final score with adjusted weights
weights = {
'trust': 0.20,
'fraud': 0.25, # Increased weight for fraud detection
'quality': 0.15,
'specs': 0.10,
'location': 0.10,
'price': 0.05,
'legal': 0.05,
'documents': 0.05,
'images': 0.05
}
final_score = sum(score * weights.get(component, 0) for component, score in component_scores.items())
verdict['score'] = final_score
# Determine verdict status based on multiple factors
fraud_level = fraud_classification.get('alert_level', 'minimal')
high_risk_indicators = len(fraud_classification.get('high_risk', []))
critical_issues = []
warnings = []
# Check for critical issues
if fraud_level in ['critical', 'high']:
critical_issues.append(f"High fraud risk detected: {fraud_level} alert level")
if trust_score < 40:
critical_issues.append(f"Very low trust score: {trust_score}%")
if quality_assessment.get('score', 0) < 30:
critical_issues.append(f"Very low content quality: {quality_assessment.get('score', 0)}%")
if specs_verification.get('verification_score', 0) < 40:
critical_issues.append(f"Property specifications verification failed: {specs_verification.get('verification_score', 0)}%")
# Check for warnings
if fraud_level == 'medium':
warnings.append(f"Medium fraud risk detected: {fraud_level} alert level")
if trust_score < 60:
warnings.append(f"Low trust score: {trust_score}%")
if quality_assessment.get('score', 0) < 60:
warnings.append(f"Low content quality: {quality_assessment.get('score', 0)}%")
if specs_verification.get('verification_score', 0) < 70:
warnings.append(f"Property specifications have issues: {specs_verification.get('verification_score', 0)}%")
# Check cross-validation results
for check in cross_validation:
if check.get('status') in ['inconsistent', 'invalid', 'suspicious', 'no_match']:
warnings.append(f"Cross-validation issue: {check.get('message', 'Unknown issue')}")
# Check for missing critical information
missing_critical = []
if not location_analysis.get('completeness_score', 0) > 70:
missing_critical.append("Location information is incomplete")
if not price_analysis.get('has_price', False):
missing_critical.append("Price information is missing")
if not legal_analysis.get('completeness_score', 0) > 70:
missing_critical.append("Legal information is incomplete")
if document_analysis.get('pdf_count', 0) == 0:
missing_critical.append("No supporting documents provided")
if image_analysis.get('image_count', 0) == 0:
missing_critical.append("No property images provided")
if missing_critical:
warnings.append(f"Missing critical information: {', '.join(missing_critical)}")
# Enhanced verdict determination with more strict criteria
if critical_issues or (fraud_level in ['critical', 'high'] and trust_score < 50) or high_risk_indicators > 0:
verdict['status'] = 'fraudulent'
verdict['confidence'] = min(100, max(70, 100 - (trust_score * 0.5)))
elif warnings or (fraud_level == 'medium' and trust_score < 70) or specs_verification.get('verification_score', 0) < 60:
verdict['status'] = 'suspicious'
verdict['confidence'] = min(100, max(50, trust_score * 0.8))
else:
verdict['status'] = 'legitimate'
verdict['confidence'] = min(100, max(70, trust_score * 0.9))
# Add reasons to verdict
verdict['critical_issues'] = critical_issues
verdict['warnings'] = warnings
# Add recommendations based on issues
if critical_issues:
verdict['recommendations'].append("Do not proceed with this property listing")
verdict['recommendations'].append("Report this listing to the platform")
elif warnings:
verdict['recommendations'].append("Proceed with extreme caution")
verdict['recommendations'].append("Request additional verification documents")
verdict['recommendations'].append("Verify all information with independent sources")
else:
verdict['recommendations'].append("Proceed with standard due diligence")
verdict['recommendations'].append("Verify final details before transaction")
# Add specific recommendations based on missing information
for missing in missing_critical:
verdict['recommendations'].append(f"Request {missing.lower()}")
return verdict
except Exception as e:
logger.error(f"Error calculating final verdict: {str(e)}")
return {
'status': 'error',
'confidence': 0.0,
'score': 0.0,
'reasons': [f"Error calculating verdict: {str(e)}"],
'critical_issues': [],
'warnings': [],
'recommendations': ["Unable to determine property status due to an error"]
}
@app.route('/verify', methods=['POST'])
def verify_property():
try:
if not request.form and not request.files:
logger.warning("No form data or files provided")
return jsonify({
'error': 'No data provided',
'status': 'error'
}), 400
# Extract form data
data = {
'property_name': request.form.get('property_name', '').strip(),
'property_type': request.form.get('property_type', '').strip(),
'status': request.form.get('status', '').strip(),
'description': request.form.get('description', '').strip(),
'address': request.form.get('address', '').strip(),
'city': request.form.get('city', '').strip(),
'state': request.form.get('state', '').strip(),
'country': request.form.get('country', 'India').strip(),
'zip': request.form.get('zip', '').strip(),
'latitude': request.form.get('latitude', '').strip(),
'longitude': request.form.get('longitude', '').strip(),
'bedrooms': request.form.get('bedrooms', '').strip(),
'bathrooms': request.form.get('bathrooms', '').strip(),
'total_rooms': request.form.get('total_rooms', '').strip(),
'year_built': request.form.get('year_built', '').strip(),
'parking': request.form.get('parking', '').strip(),
'sq_ft': request.form.get('sq_ft', '').strip(),
'market_value': request.form.get('market_value', '').strip(),
'amenities': request.form.get('amenities', '').strip(),
'nearby_landmarks': request.form.get('nearby_landmarks', '').strip(),
'legal_details': request.form.get('legal_details', '').strip()
}
# Validate required fields
required_fields = ['property_name', 'property_type', 'address', 'city', 'state']
missing_fields = [field for field in required_fields if not data[field]]
if missing_fields:
logger.warning(f"Missing required fields: {', '.join(missing_fields)}")
return jsonify({
'error': f"Missing required fields: {', '.join(missing_fields)}",
'status': 'error'
}), 400
# Process images
images = []
image_analysis = []
if 'images' in request.files:
# Get unique image files by filename to prevent duplicates
image_files = {}
for img_file in request.files.getlist('images'):
if img_file.filename and img_file.filename.lower().endswith(('.jpg', '.jpeg', '.png')):
image_files[img_file.filename] = img_file
# Process unique images
for img_file in image_files.values():
try:
img = Image.open(img_file)
buffered = io.BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
images.append(img_str)
image_analysis.append(analyze_image(img))
except Exception as e:
logger.error(f"Error processing image {img_file.filename}: {str(e)}")
image_analysis.append({'error': str(e), 'is_property_related': False})
# Process PDFs
pdf_texts = []
pdf_analysis = []
if 'documents' in request.files:
# Get unique PDF files by filename to prevent duplicates
pdf_files = {}
for pdf_file in request.files.getlist('documents'):
if pdf_file.filename and pdf_file.filename.lower().endswith('.pdf'):
pdf_files[pdf_file.filename] = pdf_file
# Process unique PDFs
for pdf_file in pdf_files.values():
try:
pdf_text = extract_pdf_text(pdf_file)
pdf_texts.append({
'filename': pdf_file.filename,
'text': pdf_text
})
pdf_analysis.append(analyze_pdf_content(pdf_text, data))
except Exception as e:
logger.error(f"Error processing PDF {pdf_file.filename}: {str(e)}")
pdf_analysis.append({'error': str(e)})
# Create consolidated text for analysis
consolidated_text = f"""
Property Name: {data['property_name']}
Property Type: {data['property_type']}
Status: {data['status']}
Description: {data['description']}
Location: {data['address']}, {data['city']}, {data['state']}, {data['country']}, {data['zip']}
Coordinates: Lat {data['latitude']}, Long {data['longitude']}
Specifications: {data['bedrooms']} bedrooms, {data['bathrooms']} bathrooms, {data['total_rooms']} total rooms
Year Built: {data['year_built']}
Parking: {data['parking']}
Size: {data['sq_ft']} sq. ft.
Market Value: ₹{data['market_value']}
Amenities: {data['amenities']}
Nearby Landmarks: {data['nearby_landmarks']}
Legal Details: {data['legal_details']}
"""
# Process description translation if needed
try:
description = data['description']
if description and len(description) > 10:
text_language = detect(description)
if text_language != 'en':
translated_description = GoogleTranslator(source=text_language, target='en').translate(description)
data['description_translated'] = translated_description
else:
data['description_translated'] = description
else:
data['description_translated'] = description
except Exception as e:
logger.error(f"Error in language detection/translation: {str(e)}")
data['description_translated'] = data['description']
# Run all analyses in parallel using asyncio
async def run_analyses():
with concurrent.futures.ThreadPoolExecutor() as executor:
loop = asyncio.get_event_loop()
tasks = [
loop.run_in_executor(executor, generate_property_summary, data),
loop.run_in_executor(executor, classify_fraud, consolidated_text, data),
loop.run_in_executor(executor, generate_trust_score, consolidated_text, image_analysis, pdf_analysis),
loop.run_in_executor(executor, generate_suggestions, consolidated_text, data),
loop.run_in_executor(executor, assess_text_quality, data['description_translated']),
loop.run_in_executor(executor, verify_address, data),
loop.run_in_executor(executor, perform_cross_validation, data),
loop.run_in_executor(executor, analyze_location, data),
loop.run_in_executor(executor, analyze_price, data),
loop.run_in_executor(executor, analyze_legal_details, data['legal_details']),
loop.run_in_executor(executor, verify_property_specs, data),
loop.run_in_executor(executor, analyze_market_value, data)
]
results = await asyncio.gather(*tasks)
return results
# Run analyses and get results
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
analysis_results = loop.run_until_complete(run_analyses())
loop.close()
# Unpack results
summary, fraud_classification, (trust_score, trust_reasoning), suggestions, quality_assessment, \
address_verification, cross_validation, location_analysis, price_analysis, legal_analysis, \
specs_verification, market_analysis = analysis_results
# Prepare response
document_analysis = {
'pdf_count': len(pdf_texts),
'pdf_texts': pdf_texts,
'pdf_analysis': pdf_analysis
}
image_results = {
'image_count': len(images),
'image_analysis': image_analysis
}
report_id = str(uuid.uuid4())
# Create results dictionary
results = {
'report_id': report_id,
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'summary': summary,
'fraud_classification': fraud_classification,
'trust_score': {
'score': trust_score,
'reasoning': trust_reasoning
},
'suggestions': suggestions,
'quality_assessment': quality_assessment,
'address_verification': address_verification,
'cross_validation': cross_validation,
'location_analysis': location_analysis,
'price_analysis': price_analysis,
'legal_analysis': legal_analysis,
'document_analysis': document_analysis,
'image_analysis': image_results,
'specs_verification': specs_verification,
'market_analysis': market_analysis,
'images': images
}
# Calculate final verdict
final_verdict = calculate_final_verdict(results)
results['final_verdict'] = final_verdict
return jsonify(make_json_serializable(results))
except Exception as e:
logger.error(f"Error in verify_property: {str(e)}")
return jsonify({
'error': 'Server error occurred. Please try again later.',
'status': 'error',
'details': str(e)
}), 500
if __name__ == '__main__':
# Run Flask app
app.run(host='0.0.0.0', port=8000, debug=True, use_reloader=False)
|