#!/usr/bin/env python3 """ CDL (Color Decision List) based edge smoothing for SegMatch """ import numpy as np from typing import Tuple, Optional from PIL import Image import cv2 def calculate_cdl_params_face_only(source: np.ndarray, target: np.ndarray, source_face_mask: np.ndarray, target_face_mask: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Calculate CDL parameters using only face pixels for focused accuracy. Args: source (np.ndarray): Source image as numpy array (0-1 range) target (np.ndarray): Target image as numpy array (0-1 range) source_face_mask (np.ndarray): Binary mask of face in source image target_face_mask (np.ndarray): Binary mask of face in target image Returns: Tuple[np.ndarray, np.ndarray, np.ndarray]: (slope, offset, power) """ epsilon = 1e-6 # Extract face pixels only source_face_pixels = source[source_face_mask > 0.5] target_face_pixels = target[target_face_mask > 0.5] # Ensure we have enough face pixels if len(source_face_pixels) < 100 or len(target_face_pixels) < 100: # Fallback to simple calculation if not enough face pixels return calculate_cdl_params_simple(source, target) slopes = [] offsets = [] powers = [] for channel in range(3): src_channel = source_face_pixels[:, channel] tgt_channel = target_face_pixels[:, channel] # Use robust percentiles for face pixels percentiles = [10, 25, 50, 75, 90] src_percentiles = np.percentile(src_channel, percentiles) tgt_percentiles = np.percentile(tgt_channel, percentiles) # Calculate slope from face pixel range src_range = src_percentiles[4] - src_percentiles[0] # 90th - 10th tgt_range = tgt_percentiles[4] - tgt_percentiles[0] slope = tgt_range / (src_range + epsilon) # Calculate offset using face median src_median = src_percentiles[2] tgt_median = tgt_percentiles[2] offset = tgt_median - (src_median * slope) # Calculate gamma from face brightness relationship src_mean = np.mean(src_channel) tgt_mean = np.mean(tgt_channel) if src_mean > epsilon: power = np.log(tgt_mean + epsilon) / np.log(src_mean + epsilon) power = np.clip(power, 0.3, 3.0) else: power = 1.0 slopes.append(slope) offsets.append(offset) powers.append(power) return np.array(slopes), np.array(offsets), np.array(powers) def calculate_cdl_params_simple(source: np.ndarray, target: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Simple CDL calculation as fallback method. Args: source (np.ndarray): Source image as numpy array (0-1 range) target (np.ndarray): Target image as numpy array (0-1 range) Returns: Tuple[np.ndarray, np.ndarray, np.ndarray]: (slope, offset, power) """ epsilon = 1e-6 # Calculate mean and standard deviation for each RGB channel source_mean = np.mean(source, axis=(0, 1)) source_std = np.std(source, axis=(0, 1)) target_mean = np.mean(target, axis=(0, 1)) target_std = np.std(target, axis=(0, 1)) # Calculate slope (gain) slope = target_std / (source_std + epsilon) # Calculate offset offset = target_mean - (source_mean * slope) # Set power to neutral power = np.ones(3) return slope, offset, power def calculate_cdl_params_histogram(source: np.ndarray, target: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Calculate CDL parameters using histogram matching approach. Args: source (np.ndarray): Source image as numpy array (0-1 range) target (np.ndarray): Target image as numpy array (0-1 range) Returns: Tuple[np.ndarray, np.ndarray, np.ndarray]: (slope, offset, power) """ epsilon = 1e-6 # Convert to 0-255 range for histogram calculation source_255 = (source * 255).astype(np.uint8) target_255 = (target * 255).astype(np.uint8) slopes = [] offsets = [] powers = [] for channel in range(3): # Calculate histograms hist_source = cv2.calcHist([source_255], [channel], None, [256], [0, 256]) hist_target = cv2.calcHist([target_255], [channel], None, [256], [0, 256]) # Calculate cumulative distributions cdf_source = np.cumsum(hist_source) / np.sum(hist_source) cdf_target = np.cumsum(hist_target) / np.sum(hist_target) # Find percentile mappings p25_src = np.percentile(source[:, :, channel], 25) p75_src = np.percentile(source[:, :, channel], 75) p25_tgt = np.percentile(target[:, :, channel], 25) p75_tgt = np.percentile(target[:, :, channel], 75) # Calculate slope from percentile mapping slope = (p75_tgt - p25_tgt) / (p75_src - p25_src + epsilon) # Calculate offset median_src = np.percentile(source[:, :, channel], 50) median_tgt = np.percentile(target[:, :, channel], 50) offset = median_tgt - (median_src * slope) # Estimate power/gamma from the histogram shape mean_src = np.mean(source[:, :, channel]) mean_tgt = np.mean(target[:, :, channel]) if mean_src > epsilon: power = np.log(mean_tgt + epsilon) / np.log(mean_src + epsilon) power = np.clip(power, 0.1, 10.0) # Reasonable gamma range else: power = 1.0 slopes.append(slope) offsets.append(offset) powers.append(power) return np.array(slopes), np.array(offsets), np.array(powers) def calculate_cdl_params_mask_aware(source: np.ndarray, target: np.ndarray, changed_mask: Optional[np.ndarray] = None) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Calculate CDL parameters focusing only on changed regions. Args: source (np.ndarray): Source image as numpy array (0-1 range) target (np.ndarray): Target image as numpy array (0-1 range) changed_mask (np.ndarray, optional): Binary mask of changed regions Returns: Tuple[np.ndarray, np.ndarray, np.ndarray]: (slope, offset, power) """ if changed_mask is not None: # Only use pixels where changes occurred mask_bool = changed_mask > 0.5 if np.sum(mask_bool) > 100: # Ensure enough pixels source_masked = source[mask_bool] target_masked = target[mask_bool] # Reshape back to have channel dimension source_masked = source_masked.reshape(-1, 3) target_masked = target_masked.reshape(-1, 3) # Calculate statistics on masked regions epsilon = 1e-6 source_mean = np.mean(source_masked, axis=0) source_std = np.std(source_masked, axis=0) target_mean = np.mean(target_masked, axis=0) target_std = np.std(target_masked, axis=0) slope = target_std / (source_std + epsilon) offset = target_mean - (source_mean * slope) power = np.ones(3) return slope, offset, power # Fallback to simple method if mask is not useful return calculate_cdl_params_simple(source, target) def calculate_cdl_params_lab(source: np.ndarray, target: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Calculate CDL parameters in LAB color space for better perceptual matching. Args: source (np.ndarray): Source image as numpy array (0-1 range) target (np.ndarray): Target image as numpy array (0-1 range) Returns: Tuple[np.ndarray, np.ndarray, np.ndarray]: (slope, offset, power) """ # Convert to LAB color space source_lab = cv2.cvtColor((source * 255).astype(np.uint8), cv2.COLOR_RGB2LAB).astype(np.float32) target_lab = cv2.cvtColor((target * 255).astype(np.uint8), cv2.COLOR_RGB2LAB).astype(np.float32) # Normalize LAB values source_lab[:, :, 0] /= 100.0 # L: 0-100 -> 0-1 source_lab[:, :, 1] = (source_lab[:, :, 1] + 128) / 255.0 # A: -128-127 -> 0-1 source_lab[:, :, 2] = (source_lab[:, :, 2] + 128) / 255.0 # B: -128-127 -> 0-1 target_lab[:, :, 0] /= 100.0 target_lab[:, :, 1] = (target_lab[:, :, 1] + 128) / 255.0 target_lab[:, :, 2] = (target_lab[:, :, 2] + 128) / 255.0 # Calculate CDL in LAB space epsilon = 1e-6 source_mean = np.mean(source_lab, axis=(0, 1)) source_std = np.std(source_lab, axis=(0, 1)) target_mean = np.mean(target_lab, axis=(0, 1)) target_std = np.std(target_lab, axis=(0, 1)) slope_lab = target_std / (source_std + epsilon) offset_lab = target_mean - (source_mean * slope_lab) # Convert back to RGB approximation # This is a simplified conversion - for full accuracy we'd need to convert each pixel slope = np.array([slope_lab[0], slope_lab[1], slope_lab[2]]) # Rough mapping offset = np.array([offset_lab[0], offset_lab[1], offset_lab[2]]) power = np.ones(3) return slope, offset, power def calculate_cdl_params(source: np.ndarray, target: np.ndarray, source_path: str = None, target_path: str = None) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Calculate CDL parameters using simple mean/std matching - the most basic approach. Args: source (np.ndarray): Source image as numpy array (0-1 range) target (np.ndarray): Target image as numpy array (0-1 range) source_path (str, optional): Ignored - kept for compatibility target_path (str, optional): Ignored - kept for compatibility Returns: Tuple[np.ndarray, np.ndarray, np.ndarray]: (slope, offset, power) """ epsilon = 1e-6 # Calculate simple mean and standard deviation for each RGB channel source_mean = np.mean(source, axis=(0, 1)) source_std = np.std(source, axis=(0, 1)) target_mean = np.mean(target, axis=(0, 1)) target_std = np.std(target, axis=(0, 1)) # Calculate slope (gain) from std ratio slope = target_std / (source_std + epsilon) # Calculate offset from mean difference offset = target_mean - (source_mean * slope) # Calculate simple gamma from brightness relationship power = [] for channel in range(3): if source_mean[channel] > epsilon: gamma = np.log(target_mean[channel] + epsilon) / np.log(source_mean[channel] + epsilon) gamma = np.clip(gamma, 0.1, 10.0) # Keep within reasonable bounds else: gamma = 1.0 power.append(gamma) power = np.array(power) return slope, offset, power def calculate_change_mask(original: np.ndarray, composited: np.ndarray, threshold: float = 0.05) -> np.ndarray: """Calculate a mask of significantly changed regions between original and composited images. Args: original (np.ndarray): Original image (0-1 range) composited (np.ndarray): Composited result (0-1 range) threshold (float): Threshold for detecting significant changes Returns: np.ndarray: Binary mask of changed regions """ # Calculate per-pixel difference diff = np.sqrt(np.sum((composited - original) ** 2, axis=2)) # Create binary mask where changes exceed threshold change_mask = (diff > threshold).astype(np.float32) # Apply morphological operations to clean up the mask kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) change_mask = cv2.morphologyEx(change_mask, cv2.MORPH_CLOSE, kernel) return change_mask def calculate_channel_stats(array: np.ndarray) -> dict: """Calculate per-channel statistics for an image array. Args: array: Image array of shape (H, W, 3) Returns: dict: Dictionary containing mean, std, min, max for each channel """ stats = { 'mean': np.mean(array, axis=(0, 1)), 'std': np.std(array, axis=(0, 1)), 'min': np.min(array, axis=(0, 1)), 'max': np.max(array, axis=(0, 1)) } return stats def apply_cdl_transform(image: np.ndarray, slope: np.ndarray, offset: np.ndarray, power: np.ndarray, factor: float = 0.3) -> np.ndarray: """Apply CDL transformation to an image. Args: image (np.ndarray): Input image (0-1 range) slope (np.ndarray): CDL slope parameters for each channel offset (np.ndarray): CDL offset parameters for each channel power (np.ndarray): CDL power parameters for each channel factor (float): Blending factor (0.0 = no change, 1.0 = full transform) Returns: np.ndarray: Transformed image """ # Apply CDL transform: out = ((in * slope) + offset) ** power transformed = np.power(np.maximum(image * slope + offset, 0), power) # Clamp to valid range transformed = np.clip(transformed, 0.0, 1.0) # Blend with original based on factor result = (1 - factor) * image + factor * transformed return result def cdl_edge_smoothing(composited_image_path: str, original_image_path: str, factor: float = 0.3) -> Image.Image: """Apply CDL-based edge smoothing between composited result and original image. Args: composited_image_path (str): Path to the composited result image original_image_path (str): Path to the original target image factor (float): Smoothing strength (0.0 = no smoothing, 1.0 = full smoothing) Returns: Image.Image: Smoothed result image """ # Load images composited_img = Image.open(composited_image_path).convert("RGB") original_img = Image.open(original_image_path).convert("RGB") # Ensure same dimensions if composited_img.size != original_img.size: composited_img = composited_img.resize(original_img.size, Image.LANCZOS) # Convert to numpy arrays (0-1 range) composited_np = np.array(composited_img).astype(np.float32) / 255.0 original_np = np.array(original_img).astype(np.float32) / 255.0 # Calculate CDL parameters to transform composited to match original slope, offset, power = calculate_cdl_params(composited_np, original_np) # Apply CDL transformation with blending smoothed_np = apply_cdl_transform(composited_np, slope, offset, power, factor) # Convert back to PIL Image smoothed_img = Image.fromarray((smoothed_np * 255).astype(np.uint8)) return smoothed_img def get_smoothing_stats(original_image_path: str, composited_image_path: str) -> dict: """Get statistics about the CDL transformation for debugging. Args: original_image_path (str): Path to the original target image composited_image_path (str): Path to the composited result image Returns: dict: Statistics about the transformation """ # Load images composited_img = Image.open(composited_image_path).convert("RGB") original_img = Image.open(original_image_path).convert("RGB") # Ensure same dimensions if composited_img.size != original_img.size: composited_img = composited_img.resize(original_img.size, Image.LANCZOS) # Convert to numpy arrays (0-1 range) composited_np = np.array(composited_img).astype(np.float32) / 255.0 original_np = np.array(original_img).astype(np.float32) / 255.0 # Calculate statistics composited_stats = calculate_channel_stats(composited_np) original_stats = calculate_channel_stats(original_np) # Calculate CDL parameters using face-based method when possible slope, offset, power = calculate_cdl_params(original_np, composited_np, original_image_path, composited_image_path) return { 'composited_stats': composited_stats, 'original_stats': original_stats, 'cdl_slope': slope, 'cdl_offset': offset, 'cdl_power': power } def cdl_edge_smoothing_apply_to_source(source_image_path: str, target_image_path: str, factor: float = 1.0) -> Image.Image: """Apply CDL transformation to source image using face-based parameters when possible. This function: 1. Calculates CDL parameters to transform source to match target (using face pixels when available) 2. Applies those CDL parameters to the entire source image 3. Returns the transformed source image Args: source_image_path (str): Path to the source image (to be transformed) target_image_path (str): Path to the target image (reference for CDL calculation) factor (float): Transform strength (0.0 = no change, 1.0 = full transform) Returns: Image.Image: Source image with CDL transformation applied """ # Load images source_img = Image.open(source_image_path).convert("RGB") target_img = Image.open(target_image_path).convert("RGB") # Ensure same dimensions if source_img.size != target_img.size: target_img = target_img.resize(source_img.size, Image.LANCZOS) # Convert to numpy arrays (0-1 range) source_np = np.array(source_img).astype(np.float32) / 255.0 target_np = np.array(target_img).astype(np.float32) / 255.0 # Calculate CDL parameters using face-based method when possible slope, offset, power = calculate_cdl_params(source_np, target_np, source_image_path, target_image_path) # Apply CDL transformation to the entire source image transformed_np = apply_cdl_transform(source_np, slope, offset, power, factor) # Convert back to PIL Image transformed_img = Image.fromarray((transformed_np * 255).astype(np.uint8)) return transformed_img def extract_face_mask(image_path: str) -> Optional[np.ndarray]: """Extract face mask from an image using human parts segmentation. Args: image_path (str): Path to the image Returns: np.ndarray or None: Binary face mask, or None if no face found """ try: from human_parts_segmentation import HumanPartsSegmentation segmenter = HumanPartsSegmentation() masks_dict = segmenter.segment_parts(image_path, ['face']) if 'face' in masks_dict and masks_dict['face'] is not None: face_mask = masks_dict['face'] # Ensure it's a proper binary mask if np.sum(face_mask > 0.5) > 100: # At least 100 face pixels return face_mask return None except Exception as e: print(f"Face extraction failed: {e}") return None