import gradio as gr from core import Ladeco from matplotlib.figure import Figure import matplotlib.pyplot as plt import matplotlib as mpl import spaces from PIL import Image import numpy as np from color_matching import RegionColorMatcher, create_comparison_figure from face_comparison import FaceComparison from cdl_smoothing import cdl_edge_smoothing, get_smoothing_stats, cdl_edge_smoothing_apply_to_source import tempfile import os import cv2 plt.rcParams['figure.facecolor'] = '#0b0f19' plt.rcParams['text.color'] = '#aab6cc' ladeco = Ladeco() @spaces.GPU def infer_two_images(img1: str, img2: str, method: str, enable_face_matching: bool, enable_edge_smoothing: bool) -> tuple[Figure, Figure, Figure, Figure, Figure, Figure, str, str, str]: """ Clean 4-step approach: 1. Segment both images identically 2. Determine segment correspondences 3. Match each segment pair in isolation 4. Composite all matched segments """ cdl_display = "" # Initialize CDL display string # STEP 1: SEGMENT BOTH IMAGES IDENTICALLY # This step is always identical regardless of face matching print("Step 1: Segmenting both images...") out1 = ladeco.predict(img1) out2 = ladeco.predict(img2) # Extract visualization and stats (unchanged) seg1 = out1.visualize(level=2)[0].image colormap1 = out1.color_map(level=2) area1 = out1.area()[0] seg2 = out2.visualize(level=2)[0].image colormap2 = out2.color_map(level=2) area2 = out2.area()[0] # Process areas for pie charts colors1, l2_area1 = [], {} for labelname, area_ratio in area1.items(): if labelname.startswith("l2") and area_ratio > 0: colors1.append(colormap1[labelname]) labelname = labelname.replace("l2_", "").capitalize() l2_area1[labelname] = area_ratio colors2, l2_area2 = [], {} for labelname, area_ratio in area2.items(): if labelname.startswith("l2") and area_ratio > 0: colors2.append(colormap2[labelname]) labelname = labelname.replace("l2_", "").capitalize() l2_area2[labelname] = area_ratio pie1 = plot_pie(l2_area1, colors=colors1) pie2 = plot_pie(l2_area2, colors=colors2) # Set plot sizes for fig in [seg1, seg2, pie1, pie2]: fig.set_dpi(96) fig.set_size_inches(256/96, 256/96) # Extract semantic masks - IDENTICAL for both images regardless of face matching masks1 = extract_semantic_masks(out1) masks2 = extract_semantic_masks(out2) print(f"Extracted {len(masks1)} masks from img1, {len(masks2)} masks from img2") # STEP 2: DETERMINE SEGMENT CORRESPONDENCES print("Step 2: Determining segment correspondences...") face_log = ["Step 2: Determining segment correspondences"] # Find common segments between both images common_segments = set(masks1.keys()).intersection(set(masks2.keys())) face_log.append(f"Found {len(common_segments)} common segments: {sorted(common_segments)}") # Determine which segments to match based on face matching logic segments_to_match = determine_segments_to_match(img1, img2, common_segments, enable_face_matching, face_log) face_log.append(f"Final segments to match: {sorted(segments_to_match)}") # STEP 3: MATCH EACH SEGMENT PAIR IN ISOLATION print("Step 3: Matching each segment pair in isolation...") face_log.append("\nStep 3: Color matching each segment independently") matched_regions = {} segment_masks = {} # Store masks for all segments being matched for segment_name in segments_to_match: if segment_name in masks1 and segment_name in masks2: face_log.append(f" Processing {segment_name}...") # Match this segment in complete isolation matched_region, final_mask1, final_mask2 = match_single_segment( img1, img2, masks1[segment_name], masks2[segment_name], segment_name, method, face_log ) if matched_region is not None: matched_regions[segment_name] = matched_region segment_masks[segment_name] = final_mask2 # Use mask from target image for compositing face_log.append(f" ✅ {segment_name} matched successfully") else: face_log.append(f" ❌ {segment_name} matching failed") elif segment_name.startswith('l4_'): # Handle fine-grained segments that need to be generated face_log.append(f" Processing fine-grained {segment_name}...") matched_region, final_mask1, final_mask2 = match_single_segment( img1, img2, None, None, segment_name, method, face_log ) if matched_region is not None: matched_regions[segment_name] = matched_region segment_masks[segment_name] = final_mask2 # Store the generated mask face_log.append(f" ✅ {segment_name} matched successfully") else: face_log.append(f" ❌ {segment_name} matching failed") # STEP 4: COMPOSITE ALL MATCHED SEGMENTS print("Step 4: Compositing all matched segments...") face_log.append(f"\nStep 4: Compositing {len(matched_regions)} matched segments") final_image = composite_matched_segments(img2, matched_regions, segment_masks, face_log) # STEP 5: OPTIONAL CDL-BASED EDGE SMOOTHING if enable_edge_smoothing: print("Step 5: Applying CDL-based edge smoothing...") face_log.append("\nStep 5: CDL edge smoothing - applying CDL transform to image 2 based on composited result") try: # Save the composited result temporarily for CDL calculation temp_dir = tempfile.gettempdir() temp_composite_path = os.path.join(temp_dir, "temp_composite_for_cdl.png") final_image.save(temp_composite_path, "PNG") # Calculate CDL parameters to transform image 2 → composited result cdl_stats = get_smoothing_stats(img2, temp_composite_path) # Log the CDL values slope = cdl_stats['cdl_slope'] offset = cdl_stats['cdl_offset'] power = cdl_stats['cdl_power'] # Format CDL values for display cdl_display = f"""📊 CDL Parameters (Image 2 → Composited Result): 🔧 Method: Simple Mean/Std Matching (basic statistical approach) 🔸 Slope (Gain): Red: {slope[0]:.6f} Green: {slope[1]:.6f} Blue: {slope[2]:.6f} 🔸 Offset: Red: {offset[0]:.6f} Green: {offset[1]:.6f} Blue: {offset[2]:.6f} 🔸 Power (Gamma): Red: {power[0]:.6f} Green: {power[1]:.6f} Blue: {power[2]:.6f} These CDL values represent the color transformation needed to convert Image 2 into the composited result. The CDL calculation uses the simplest possible approach: matches the mean and standard deviation of each color channel between the original and composited images, with simple gamma calculation based on brightness relationships. """ face_log.append(f"📊 CDL Parameters (image 2 → composited result):") face_log.append(f" Method: Simple mean/std matching") face_log.append(f" Slope (R,G,B): [{slope[0]:.4f}, {slope[1]:.4f}, {slope[2]:.4f}]") face_log.append(f" Offset (R,G,B): [{offset[0]:.4f}, {offset[1]:.4f}, {offset[2]:.4f}]") face_log.append(f" Power (R,G,B): [{power[0]:.4f}, {power[1]:.4f}, {power[2]:.4f}]") # Apply CDL transformation to image 2 to approximate the composited result final_image = cdl_edge_smoothing_apply_to_source(img2, temp_composite_path, factor=1.0) # Clean up temp file if os.path.exists(temp_composite_path): os.remove(temp_composite_path) face_log.append("✅ CDL edge smoothing completed - transformed image 2 using calculated CDL parameters") except Exception as e: face_log.append(f"❌ CDL edge smoothing failed: {e}") cdl_display = f"❌ CDL calculation failed: {e}" else: face_log.append("\nStep 5: CDL edge smoothing disabled") cdl_display = "CDL edge smoothing is disabled. Enable it to see CDL parameters." # Save result temp_dir = tempfile.gettempdir() filename = os.path.basename(img2).split('.')[0] temp_filename = f"color_matched_{method}_{filename}.png" temp_path = os.path.join(temp_dir, temp_filename) final_image.save(temp_path, "PNG") # Create visualizations # For visualization, we need to collect the masks that were actually used vis_masks1 = {} vis_masks2 = {} for segment_name in segments_to_match: if segment_name in segment_masks: if segment_name.startswith('l4_'): # Fine-grained segments - we'll regenerate for visualization part_name = segment_name.replace('l4_', '') if part_name in ['face', 'hair']: from human_parts_segmentation import HumanPartsSegmentation segmenter = HumanPartsSegmentation() masks_dict1 = segmenter.segment_parts(img1, [part_name]) masks_dict2 = segmenter.segment_parts(img2, [part_name]) if part_name in masks_dict1 and part_name in masks_dict2: vis_masks1[segment_name] = masks_dict1[part_name] vis_masks2[segment_name] = masks_dict2[part_name] elif part_name == 'upper_clothes': from clothes_segmentation import ClothesSegmentation segmenter = ClothesSegmentation() mask1 = segmenter.segment_clothes(img1, ["Upper-clothes"]) mask2 = segmenter.segment_clothes(img2, ["Upper-clothes"]) if mask1 is not None and mask2 is not None: vis_masks1[segment_name] = mask1 vis_masks2[segment_name] = mask2 else: # Regular segments - use original masks if segment_name in masks1 and segment_name in masks2: vis_masks1[segment_name] = masks1[segment_name] vis_masks2[segment_name] = masks2[segment_name] mask_vis = visualize_matching_masks(img1, img2, vis_masks1, vis_masks2) comparison = create_comparison_figure(Image.open(img2), final_image, f"Color Matching Result ({method})") face_log_text = "\n".join(face_log) return seg1, pie1, seg2, pie2, comparison, mask_vis, temp_path, face_log_text, cdl_display def determine_segments_to_match(img1: str, img2: str, common_segments: set, enable_face_matching: bool, log: list) -> set: """ Determine which segments should be matched based on face matching logic. Returns the set of segment names to process. """ if not enable_face_matching: log.append("Face matching disabled - matching all common segments") return common_segments log.append("Face matching enabled - checking faces...") # Run face comparison face_comparator = FaceComparison() faces_match, face_log = face_comparator.run_face_comparison(img1, img2) log.extend(face_log) if not faces_match: # Remove human/bio segments from matching log.append("No face match - excluding human/bio segments") non_human_segments = set() for segment in common_segments: if not any(term in segment.lower() for term in ['l3_human', 'l2_bio']): non_human_segments.add(segment) else: log.append(f" Excluding human segment: {segment}") log.append(f"Matching {len(non_human_segments)} non-human segments") return non_human_segments else: # Faces match - include all segments + add fine-grained if possible log.append("Faces match - including all segments + fine-grained") segments_to_match = common_segments.copy() # Add fine-grained human parts if bio regions exist bio_segments = [s for s in common_segments if 'l2_bio' in s.lower()] if bio_segments: fine_grained_segments = add_fine_grained_segments(img1, img2, common_segments, log) segments_to_match.update(fine_grained_segments) return segments_to_match def add_fine_grained_segments(img1: str, img2: str, common_segments: set, log: list) -> set: """ Add fine-grained human parts segments when faces match. Returns set of fine-grained segment names that were successfully added. """ fine_grained_segments = set() try: from human_parts_segmentation import HumanPartsSegmentation from clothes_segmentation import ClothesSegmentation log.append(" Adding fine-grained human parts...") # Get face and hair masks human_segmenter = HumanPartsSegmentation() face_hair_masks1 = human_segmenter.segment_parts(img1, ['face', 'hair']) face_hair_masks2 = human_segmenter.segment_parts(img2, ['face', 'hair']) # Get clothes masks clothes_segmenter = ClothesSegmentation() clothes_mask1 = clothes_segmenter.segment_clothes(img1, ["Upper-clothes"]) clothes_mask2 = clothes_segmenter.segment_clothes(img2, ["Upper-clothes"]) # Process face/hair for part_name, mask1 in face_hair_masks1.items(): if (mask1 is not None and part_name in face_hair_masks2 and face_hair_masks2[part_name] is not None): if np.sum(mask1 > 0) > 0 and np.sum(face_hair_masks2[part_name] > 0) > 0: fine_grained_segments.add(f'l4_{part_name}') log.append(f" Added fine-grained: {part_name}") # Process clothes if (clothes_mask1 is not None and clothes_mask2 is not None and np.sum(clothes_mask1 > 0) > 0 and np.sum(clothes_mask2 > 0) > 0): fine_grained_segments.add('l4_upper_clothes') log.append(f" Added fine-grained: upper_clothes") except Exception as e: log.append(f" Error adding fine-grained segments: {e}") return fine_grained_segments def match_single_segment(img1_path: str, img2_path: str, mask1: np.ndarray, mask2: np.ndarray, segment_name: str, method: str, log: list) -> tuple[Image.Image, np.ndarray, np.ndarray]: """ Match colors of a single segment in complete isolation from other segments. Each segment is processed independently with no knowledge of other segments. Returns: (matched_image, final_mask1, final_mask2) """ try: # Load images img1 = Image.open(img1_path).convert("RGB") img2 = Image.open(img2_path).convert("RGB") # Convert to numpy img1_np = np.array(img1) img2_np = np.array(img2) # Handle fine-grained segments if segment_name.startswith('l4_'): part_name = segment_name.replace('l4_', '') if part_name in ['face', 'hair']: from human_parts_segmentation import HumanPartsSegmentation segmenter = HumanPartsSegmentation() masks_dict1 = segmenter.segment_parts(img1_path, [part_name]) masks_dict2 = segmenter.segment_parts(img2_path, [part_name]) if part_name in masks_dict1 and part_name in masks_dict2: mask1 = masks_dict1[part_name] mask2 = masks_dict2[part_name] else: return None, None, None elif part_name == 'upper_clothes': from clothes_segmentation import ClothesSegmentation segmenter = ClothesSegmentation() mask1 = segmenter.segment_clothes(img1_path, ["Upper-clothes"]) mask2 = segmenter.segment_clothes(img2_path, ["Upper-clothes"]) if mask1 is None or mask2 is None: return None, None, None # Ensure masks are same size as images if mask1.shape != img1_np.shape[:2]: mask1 = cv2.resize(mask1.astype(np.float32), (img1_np.shape[1], img1_np.shape[0]), interpolation=cv2.INTER_NEAREST) if mask2.shape != img2_np.shape[:2]: mask2 = cv2.resize(mask2.astype(np.float32), (img2_np.shape[1], img2_np.shape[0]), interpolation=cv2.INTER_NEAREST) # Convert to binary masks mask1_binary = (mask1 > 0.5).astype(np.float32) mask2_binary = (mask2 > 0.5).astype(np.float32) # Check if masks have content pixels1 = np.sum(mask1_binary > 0) pixels2 = np.sum(mask2_binary > 0) if pixels1 == 0 or pixels2 == 0: log.append(f" No pixels in {segment_name}: img1={pixels1}, img2={pixels2}") return None, None, None log.append(f" {segment_name}: img1={pixels1} pixels, img2={pixels2} pixels") # Create single-segment masks dictionary for color matcher masks1_dict = {segment_name: mask1_binary} masks2_dict = {segment_name: mask2_binary} # Apply color matching to this segment only color_matcher = RegionColorMatcher(factor=0.8, preserve_colors=True, preserve_luminance=True, method=method) matched_img = color_matcher.match_regions(img1_path, img2_path, masks1_dict, masks2_dict) return matched_img, mask1_binary, mask2_binary except Exception as e: log.append(f" Error matching {segment_name}: {e}") return None, None, None def composite_matched_segments(base_img_path: str, matched_regions: dict, segment_masks: dict, log: list) -> Image.Image: """ Composite all matched segments back together using simple alpha compositing. Each matched segment is completely independent and overlaid on the base image. """ # Start with base image result = Image.open(base_img_path).convert("RGBA") result_np = np.array(result) log.append(f"Compositing {len(matched_regions)} segments onto base image") for segment_name, matched_img in matched_regions.items(): if segment_name in segment_masks: mask = segment_masks[segment_name] # Ensure mask is right size if mask.shape != result_np.shape[:2]: mask = cv2.resize(mask.astype(np.float32), (result_np.shape[1], result_np.shape[0]), interpolation=cv2.INTER_NEAREST) # Convert matched image to numpy matched_np = np.array(matched_img.convert("RGB")) # Ensure matched image is right size if matched_np.shape[:2] != result_np.shape[:2]: matched_pil = Image.fromarray(matched_np) matched_pil = matched_pil.resize((result_np.shape[1], result_np.shape[0]), Image.LANCZOS) matched_np = np.array(matched_pil) # Apply mask with alpha blending mask_binary = (mask > 0.5).astype(np.float32) alpha = np.expand_dims(mask_binary, axis=2) # Blend: result = result * (1 - alpha) + matched * alpha result_np[:, :, :3] = (result_np[:, :, :3] * (1 - alpha) + matched_np * alpha).astype(np.uint8) pixels = np.sum(mask_binary > 0) log.append(f" Composited {segment_name}: {pixels} pixels") return Image.fromarray(result_np).convert("RGB") def visualize_matching_masks(img1_path, img2_path, masks1, masks2): """ Create a visualization of the masks being matched between two images. Args: img1_path: Path to first image img2_path: Path to second image masks1: Dictionary of masks for first image {label: binary_mask} masks2: Dictionary of masks for second image {label: binary_mask} Returns: A matplotlib Figure showing the matched masks """ # Load images img1 = Image.open(img1_path).convert("RGB") img2 = Image.open(img2_path).convert("RGB") # Convert to numpy arrays img1_np = np.array(img1) img2_np = np.array(img2) # Separate fine-grained human parts from regular masks fine_grained_masks = {} regular_masks = {} for label, mask in masks1.items(): if label.startswith('l4_'): # Fine-grained human parts fine_grained_masks[label] = mask else: regular_masks[label] = mask # Find common labels in both regular and fine-grained masks common_regular = set(regular_masks.keys()).intersection(set(masks2.keys())) # Count fine-grained masks that are in both masks1 and masks2 common_fine_grained = set() for label in fine_grained_masks.keys(): if label.startswith('l4_') and label in masks2: part_name = label.replace('l4_', '') common_fine_grained.add(part_name) # Count total rows needed n_regular_rows = len(common_regular) n_fine_rows = len(common_fine_grained) n_rows = n_regular_rows + n_fine_rows if n_rows == 0: # No common regions found fig, ax = plt.subplots(1, 1, figsize=(10, 5)) ax.text(0.5, 0.5, "No matching regions found between images", ha='center', va='center', fontsize=14, color='white') ax.axis('off') return fig fig, axes = plt.subplots(n_rows, 2, figsize=(12, 3 * n_rows)) # If only one row, reshape axes if n_rows == 1: axes = np.array([axes]) row_idx = 0 # Visualize regular semantic regions for label in sorted(common_regular): # Get label display name display_name = label.replace("l2_", "").capitalize() # Get masks and resize them to match the image dimensions mask1 = regular_masks[label] mask2 = masks2[label] # Create visualizations masked_img1, masked_img2 = create_mask_overlay(img1_np, img2_np, mask1, mask2, [255, 0, 0]) # Red # Plot the masked images axes[row_idx, 0].imshow(masked_img1) axes[row_idx, 0].set_title(f"Image 1: {display_name}") axes[row_idx, 0].axis('off') axes[row_idx, 1].imshow(masked_img2) axes[row_idx, 1].set_title(f"Image 2: {display_name}") axes[row_idx, 1].axis('off') row_idx += 1 # Visualize fine-grained human parts part_colors = { 'face': [255, 0, 0], # Red (like other masks) 'hair': [255, 0, 0], # Red (like other masks) 'upper_clothes': [255, 0, 0] # Red (like other masks) } for part_name in sorted(common_fine_grained): label = f'l4_{part_name}' if label in fine_grained_masks and label in masks2: mask1 = fine_grained_masks[label] mask2 = masks2[label] color = part_colors.get(part_name, [255, 0, 0]) # Default to red # Create visualizations masked_img1, masked_img2 = create_mask_overlay(img1_np, img2_np, mask1, mask2, color) # Plot the masked images display_name = part_name.replace('_', ' ').title() axes[row_idx, 0].imshow(masked_img1) axes[row_idx, 0].set_title(f"Image 1: {display_name} (Fine-grained)") axes[row_idx, 0].axis('off') axes[row_idx, 1].imshow(masked_img2) axes[row_idx, 1].set_title(f"Image 2: {display_name} (Fine-grained)") axes[row_idx, 1].axis('off') row_idx += 1 plt.suptitle("Matched Regions (highlighted with different colors)", fontsize=16, color='white') plt.tight_layout() return fig def create_mask_overlay(img1_np, img2_np, mask1, mask2, overlay_color): """ Create mask overlays on images with the specified color. Args: img1_np: First image as numpy array img2_np: Second image as numpy array mask1: Mask for first image mask2: Mask for second image overlay_color: RGB color for overlay [R, G, B] Returns: Tuple of (masked_img1, masked_img2) """ # Resize masks to match image dimensions if needed if mask1.shape != img1_np.shape[:2]: mask1_img = Image.fromarray((mask1 * 255).astype(np.uint8)) mask1_img = mask1_img.resize((img1_np.shape[1], img1_np.shape[0]), Image.NEAREST) mask1 = np.array(mask1_img).astype(np.float32) / 255.0 if mask2.shape != img2_np.shape[:2]: mask2_img = Image.fromarray((mask2 * 255).astype(np.uint8)) mask2_img = mask2_img.resize((img2_np.shape[1], img2_np.shape[0]), Image.NEAREST) mask2 = np.array(mask2_img).astype(np.float32) / 255.0 # Create masked versions of the images masked_img1 = img1_np.copy() masked_img2 = img2_np.copy() # Apply a semi-transparent colored overlay to show the masked region overlay_color = np.array(overlay_color, dtype=np.uint8) # Create alpha channel based on the mask (with transparency) alpha1 = mask1 * 0.6 # Increased opacity for better visibility alpha2 = mask2 * 0.6 # Apply the colored overlay to masked regions for c in range(3): masked_img1[:, :, c] = masked_img1[:, :, c] * (1 - alpha1) + overlay_color[c] * alpha1 masked_img2[:, :, c] = masked_img2[:, :, c] * (1 - alpha2) + overlay_color[c] * alpha2 return masked_img1, masked_img2 def extract_semantic_masks(output): """ Extract binary masks for each semantic region from the LadecoOutput. Args: output: LadecoOutput from Ladeco.predict() Returns: Dictionary mapping label names to binary masks """ masks = {} # Get the segmentation mask seg_mask = output.masks[0].cpu().numpy() # Process each label in level 2 (as we're visualizing at level 2) for label, indices in output.ladeco2ade.items(): if label.startswith("l2_"): # Create a binary mask for this label binary_mask = np.zeros_like(seg_mask, dtype=np.float32) # Set 1 for pixels matching this label for idx in indices: binary_mask[seg_mask == idx] = 1.0 # Only include labels that have some pixels in the image if np.any(binary_mask): masks[label] = binary_mask return masks def plot_pie(data: dict[str, float], colors=None) -> Figure: fig, ax = plt.subplots() labels = list(data.keys()) sizes = list(data.values()) *_, autotexts = ax.pie(sizes, labels=labels, autopct="%1.1f%%", colors=colors) for percent_text in autotexts: percent_text.set_color("k") ax.axis("equal") return fig def choose_example(imgpath: str, target_component) -> gr.Image: img = Image.open(imgpath) width, height = img.size ratio = 512 / max(width, height) img = img.resize((int(width * ratio), int(height * ratio))) return gr.Image(value=img, label="Input Image (SVG format not supported)", type="filepath") css = """ .reference { text-align: center; font-size: 1.2em; color: #d1d5db; margin-bottom: 20px; } .reference a { color: #FB923C; text-decoration: none; } .reference a:hover { text-decoration: underline; color: #FB923C; } .description { text-align: center; font-size: 1.1em; color: #d1d5db; margin-bottom: 25px; } .footer { text-align: center; margin-top: 30px; padding-top: 20px; border-top: 1px solid #ddd; color: #d1d5db; font-size: 14px; } .main-title { font-size: 24px; font-weight: bold; text-align: center; margin-bottom: 20px; } .selected-image { height: 756px; } .example-image { height: 220px; padding: 25px; } """.strip() theme = gr.themes.Base( primary_hue="orange", secondary_hue="cyan", neutral_hue="gray", ).set( body_text_color='*neutral_100', body_text_color_subdued='*neutral_600', background_fill_primary='*neutral_950', background_fill_secondary='*neutral_600', border_color_accent='*secondary_800', color_accent='*primary_50', color_accent_soft='*secondary_800', code_background_fill='*neutral_700', block_background_fill_dark='*body_background_fill', block_info_text_color='#6b7280', block_label_text_color='*neutral_300', block_label_text_weight='700', block_title_text_color='*block_label_text_color', block_title_text_weight='300', panel_background_fill='*neutral_800', table_text_color_dark='*secondary_800', checkbox_background_color_selected='*primary_500', checkbox_label_background_fill='*neutral_500', checkbox_label_background_fill_hover='*neutral_700', checkbox_label_text_color='*neutral_200', input_background_fill='*neutral_700', input_background_fill_focus='*neutral_600', slider_color='*primary_500', table_even_background_fill='*neutral_700', table_odd_background_fill='*neutral_600', table_row_focus='*neutral_800' ) with gr.Blocks(css=css, theme=theme) as demo: gr.HTML( """
SegMatch – Zero Shot Segmentation-based color matching
Advanced region-based color matching using semantic segmentation and fine-grained human parts detection for precise, contextually-aware color transfer between images.
""".strip() ) with gr.Row(): # First image inputs with gr.Column(): img1 = gr.Image( label="First Input Image - Color Reference (SVG not supported)", type="filepath", height="256px", ) gr.Label("Example Images for First Input", show_label=False) with gr.Row(): ex1_1 = gr.Image( value="examples/beach.jpg", show_label=False, type="filepath", elem_classes="example-image", interactive=False, show_download_button=False, show_fullscreen_button=False, show_share_button=False, ) ex1_2 = gr.Image( value="examples/field.jpg", show_label=False, type="filepath", elem_classes="example-image", interactive=False, show_download_button=False, show_fullscreen_button=False, show_share_button=False, ) # Second image inputs with gr.Column(): img2 = gr.Image( label="Second Input Image - To Be Color Matched (SVG not supported)", type="filepath", height="256px", ) gr.Label("Example Images for Second Input", show_label=False) with gr.Row(): ex2_1 = gr.Image( value="examples/field.jpg", show_label=False, type="filepath", elem_classes="example-image", interactive=False, show_download_button=False, show_fullscreen_button=False, show_share_button=False, ) ex2_2 = gr.Image( value="examples/sky.jpg", show_label=False, type="filepath", elem_classes="example-image", interactive=False, show_download_button=False, show_fullscreen_button=False, show_share_button=False, ) with gr.Row(): with gr.Column(): method = gr.Dropdown( label="Color Matching Method", choices=["adain", "mkl", "hm", "reinhard", "mvgd", "hm-mvgd-hm", "hm-mkl-hm", "coral"], value="adain", info="Choose the algorithm for color matching between regions" ) with gr.Column(): enable_face_matching = gr.Checkbox( label="Enable Face Matching for Human Regions", value=True, info="Only match human regions if faces are similar (requires DeepFace)" ) with gr.Row(): with gr.Column(): enable_edge_smoothing = gr.Checkbox( label="Enable CDL Edge Smoothing", value=False, info="Apply CDL transform to original image using calculated parameters (see log for values)" ) start = gr.Button("Start Analysis", variant="primary") # Download button positioned right after the start button download_btn = gr.File( label="📥 Download Color-Matched Image", visible=True, interactive=False ) with gr.Tabs(): with gr.TabItem("Segmentation Results"): with gr.Row(): # First image results with gr.Column(): gr.Label("Results for First Image", show_label=True) seg1 = gr.Plot(label="Semantic Segmentation") pie1 = gr.Plot(label="Element Area Ratio") # Second image results with gr.Column(): gr.Label("Results for Second Image", show_label=True) seg2 = gr.Plot(label="Semantic Segmentation") pie2 = gr.Plot(label="Element Area Ratio") with gr.TabItem("Color Matching"): gr.Markdown(""" ### Region-Based Color Matching This tab shows the result of matching the colors of the second image to the first image's colors, but only within corresponding semantic regions. For example, sky areas in the second image are matched to sky areas in the first image, while vegetation areas are matched separately. #### Face Matching Feature: When enabled, the system will detect faces within human/bio regions and only apply color matching to human regions where similar faces are found in both images. This ensures that color transfer only occurs between images of the same person. #### CDL Edge Smoothing Feature: When enabled, calculates Color Decision List (CDL) parameters to transform the original target image towards the segment-matched result, then applies those CDL parameters to the original image. This creates a "smoothed" version that maintains the original image's overall characteristics while incorporating the color relationships found through segment matching. The CDL calculation uses the simplest possible approach: matches the mean and standard deviation of each color channel between the original and composited images, with simple gamma calculation based on brightness relationships. #### Available Methods: - **adain**: Adaptive Instance Normalization - Matches mean and standard deviation of colors - **mkl**: Monge-Kantorovich Linearization - Linear transformation of color statistics - **reinhard**: Reinhard color transfer - Simple statistical approach that matches mean and standard deviation - **mvgd**: Multi-Variate Gaussian Distribution - Uses color covariance matrices for more accurate matching - **hm**: Histogram Matching - Matches the full color distribution histograms - **hm-mvgd-hm**: Histogram + MVGD + Histogram compound method - **hm-mkl-hm**: Histogram + MKL + Histogram compound method - **coral**: CORAL (Color Transfer using Correlated Color Temperature) - Advanced covariance-based method for natural color transfer """) # CDL Parameters Display cdl_display = gr.Textbox( label="📊 CDL Parameters", lines=15, max_lines=20, interactive=False, info="Color Decision List parameters calculated when CDL edge smoothing is enabled" ) face_log = gr.Textbox( label="Face Matching Log", lines=8, max_lines=15, interactive=False, info="Shows details of face detection and matching process" ) mask_vis = gr.Plot(label="Matched Regions Visualization") comparison = gr.Plot(label="Region-Based Color Matching Result") gr.HTML( """ """.strip() ) # Connect the inference function start.click( fn=infer_two_images, inputs=[img1, img2, method, enable_face_matching, enable_edge_smoothing], outputs=[seg1, pie1, seg2, pie2, comparison, mask_vis, download_btn, face_log, cdl_display] ) # Example image selection handlers ex1_1.select(fn=lambda x: choose_example(x, img1), inputs=ex1_1, outputs=img1) ex1_2.select(fn=lambda x: choose_example(x, img1), inputs=ex1_2, outputs=img1) ex2_1.select(fn=lambda x: choose_example(x, img2), inputs=ex2_1, outputs=img2) ex2_2.select(fn=lambda x: choose_example(x, img2), inputs=ex2_2, outputs=img2) if __name__ == "__main__": demo.launch()