File size: 12,792 Bytes
62cc23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import numpy as np
import torch
from PIL import Image, ImageFilter
import cv2
import requests
from typing import Dict, List, Tuple, Optional
import onnxruntime as ort

# Human parts labels based on CCIHP dataset - consistent with latest repo
HUMAN_PARTS_LABELS = {
    0: ("background", "Background"),
    1: ("hat", "Hat: Hat, helmet, cap, hood, veil, headscarf, part covering the skull and hair of a hood/balaclava, crown…"),
    2: ("hair", "Hair"),
    3: ("glove", "Glove"),
    4: ("glasses", "Sunglasses/Glasses: Sunglasses, eyewear, protective glasses…"),
    5: ("upper_clothes", "UpperClothes: T-shirt, shirt, tank top, sweater under a coat, top of a dress…"),
    6: ("face_mask", "Face Mask: Protective mask, surgical mask, carnival mask, facial part of a balaclava, visor of a helmet…"),
    7: ("coat", "Coat: Coat, jacket worn without anything on it, vest with nothing on it, a sweater with nothing on it…"),
    8: ("socks", "Socks"),
    9: ("pants", "Pants: Pants, shorts, tights, leggings, swimsuit bottoms… (clothing with 2 legs)"),
    10: ("torso-skin", "Torso-skin"),
    11: ("scarf", "Scarf: Scarf, bow tie, tie…"),
    12: ("skirt", "Skirt: Skirt, kilt, bottom of a dress…"),
    13: ("face", "Face"),
    14: ("left-arm", "Left-arm (naked part)"),
    15: ("right-arm", "Right-arm (naked part)"),
    16: ("left-leg", "Left-leg (naked part)"),
    17: ("right-leg", "Right-leg (naked part)"),
    18: ("left-shoe", "Left-shoe"),
    19: ("right-shoe", "Right-shoe"),
    20: ("bag", "Bag: Backpack, shoulder bag, fanny pack… (bag carried on oneself"),
    21: ("", "Others: Jewelry, tags, bibs, belts, ribbons, pins, head decorations, headphones…"),
}

# Model configuration - updated paths consistent with new repos
current_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(current_dir, "models")
models_dir_path = os.path.join(models_dir, "onnx", "human-parts")
model_url = "https://huggingface.co/Metal3d/deeplabv3p-resnet50-human/resolve/main/deeplabv3p-resnet50-human.onnx"
model_name = "deeplabv3p-resnet50-human.onnx"
model_path = os.path.join(models_dir_path, model_name)


def get_class_index(class_name: str) -> int:
    """Return the index of the class name in the model."""
    if class_name == "":
        return -1

    for key, value in HUMAN_PARTS_LABELS.items():
        if value[0] == class_name:
            return key
    return -1


def download_model(model_url: str, model_path: str) -> bool:
    """Download the human parts segmentation model if not present - improved version."""
    if os.path.exists(model_path):
        return True
    
    try:
        os.makedirs(os.path.dirname(model_path), exist_ok=True)
        print(f"Downloading human parts model to {model_path}...")
        
        response = requests.get(model_url, stream=True)
        response.raise_for_status()
        
        total_size = int(response.headers.get('content-length', 0))
        downloaded = 0
        
        with open(model_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
                downloaded += len(chunk)
                if total_size > 0:
                    percent = (downloaded / total_size) * 100
                    print(f"\rDownload progress: {percent:.1f}%", end='', flush=True)
        
        print("\n✅ Model download completed")
        return True
        
    except Exception as e:
        print(f"\n❌ Error downloading model: {e}")
        return False


def get_human_parts_mask(image: torch.Tensor, model: ort.InferenceSession, rotation: float = 0, **kwargs) -> Tuple[torch.Tensor, int]:
    """
    Generate human parts mask using the ONNX model - improved version.
    
    Args:
        image: Input image tensor
        model: ONNX inference session
        rotation: Rotation angle (not used currently)
        **kwargs: Part-specific enable flags
        
    Returns:
        Tuple of (mask_tensor, score)
    """
    image = image.squeeze(0)
    image_np = image.numpy() * 255

    pil_image = Image.fromarray(image_np.astype(np.uint8))
    original_size = pil_image.size
    
    # Resize to 512x512 as the model expects
    pil_image = pil_image.resize((512, 512))
    center = (256, 256)

    if rotation != 0:
        pil_image = pil_image.rotate(rotation, center=center)

    # Normalize the image
    image_np = np.array(pil_image).astype(np.float32) / 127.5 - 1
    image_np = np.expand_dims(image_np, axis=0)

    # Use the ONNX model to get the segmentation
    input_name = model.get_inputs()[0].name
    output_name = model.get_outputs()[0].name
    result = model.run([output_name], {input_name: image_np})
    result = np.array(result[0]).argmax(axis=3).squeeze(0)

    # Debug: Check what classes the model actually detected
    unique_classes = np.unique(result)
    
    score = 0
    mask = np.zeros_like(result)
    
    # Combine masks for enabled classes
    for class_name, enabled in kwargs.items():
        class_index = get_class_index(class_name)
        if enabled and class_index != -1:
            detected = result == class_index
            mask[detected] = 255
            score += mask.sum()

    # Resize back to original size
    mask_image = Image.fromarray(mask.astype(np.uint8), mode="L")
    if rotation != 0:
        mask_image = mask_image.rotate(-rotation, center=center)

    mask_image = mask_image.resize(original_size)

    # Convert back to numpy - improved tensor handling
    mask = np.array(mask_image).astype(np.float32) / 255.0  # Normalize to 0-1 range
    
    # Add dimensions for torch tensor - consistent format
    mask = np.expand_dims(mask, axis=0)
    mask = np.expand_dims(mask, axis=0)

    return torch.from_numpy(mask), score


def numpy_to_torch_tensor(image_np: np.ndarray) -> torch.Tensor:
    """Convert numpy array to torch tensor in the format expected by the models."""
    if len(image_np.shape) == 3:
        return torch.from_numpy(image_np.astype(np.float32) / 255.0).unsqueeze(0)
    return torch.from_numpy(image_np.astype(np.float32) / 255.0)


def torch_tensor_to_numpy(tensor: torch.Tensor) -> np.ndarray:
    """Convert torch tensor back to numpy array - improved version."""
    if len(tensor.shape) == 4:
        tensor = tensor.squeeze(0)
    
    # Always handle as float32 tensor in 0-1 range then convert to binary
    tensor_np = tensor.numpy()
    if tensor_np.dtype == np.float32 and tensor_np.max() <= 1.0:
        return (tensor_np > 0.5).astype(np.float32)  # Binary threshold
    else:
        return tensor_np


class HumanPartsSegmentation:
    """
    Standalone human parts segmentation for face and hair using DeepLabV3+ ResNet50.
    """
    
    def __init__(self):
        self.model = None
        
    def check_model_cache(self):
        """Check if model file exists in cache - consistent with updated repos."""
        if not os.path.exists(model_path):
            return False, "Model file not found"
        return True, "Model cache verified"
        
    def clear_model(self):
        """Clear model from memory - improved version."""
        if self.model is not None:
            del self.model
            self.model = None
        
    def load_model(self):
        """Load the human parts segmentation model - improved version."""
        try:
            # Check and download model if needed
            cache_status, message = self.check_model_cache()
            if not cache_status:
                print(f"Cache check: {message}")
                if not download_model(model_url, model_path):
                    return False
            
            # Load model if needed
            if self.model is None:
                print("Loading human parts segmentation model...")
                self.model = ort.InferenceSession(model_path)
                print("✅ Human parts segmentation model loaded successfully")
            
            return True
            
        except Exception as e:
            print(f"❌ Error loading human parts model: {e}")
            self.clear_model()  # Cleanup on error
            return False

    def segment_parts(self, image_path: str, parts: List[str], mask_blur: int = 0, mask_offset: int = 0) -> Dict[str, np.ndarray]:
        """
        Segment specific human parts from an image - improved version with filtering.
        
        Args:
            image_path: Path to the image file
            parts: List of part names to segment (e.g., ['face', 'hair'])
            mask_blur: Blur amount for mask edges
            mask_offset: Expand/Shrink mask boundary
            
        Returns:
            Dictionary mapping part names to binary masks
        """
        if not self.load_model():
            print("❌ Cannot load human parts segmentation model")
            return {}

        try:
            # Load image
            image = cv2.imread(image_path)
            if image is None:
                print(f"❌ Could not load image: {image_path}")
                return {}
                
            image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            
            # Convert to tensor format expected by the model
            image_tensor = numpy_to_torch_tensor(image_rgb)
            
            # Prepare kwargs for each part
            part_kwargs = {part: True for part in parts}
            
            # Get segmentation mask
            mask_tensor, score = get_human_parts_mask(image_tensor, self.model, **part_kwargs)
            
            # Convert back to numpy
            if len(mask_tensor.shape) == 4:
                mask_tensor = mask_tensor.squeeze(0).squeeze(0)
            elif len(mask_tensor.shape) == 3:
                mask_tensor = mask_tensor.squeeze(0)
            
            # Get the combined mask for all requested parts
            combined_mask = mask_tensor.numpy()
            
            # Generate individual masks for each part if multiple parts requested
            result_masks = {}
            if len(parts) == 1:
                # Single part - return the combined mask
                part_name = parts[0]
                final_mask = self._apply_filters(combined_mask, mask_blur, mask_offset)
                if np.sum(final_mask > 0) > 0:
                    result_masks[part_name] = final_mask
                else:
                    result_masks[part_name] = final_mask  # Return empty mask instead of None
            else:
                # Multiple parts - need to segment each individually
                for part in parts:
                    single_part_kwargs = {part: True}
                    single_mask_tensor, _ = get_human_parts_mask(image_tensor, self.model, **single_part_kwargs)
                    
                    if len(single_mask_tensor.shape) == 4:
                        single_mask_tensor = single_mask_tensor.squeeze(0).squeeze(0)
                    elif len(single_mask_tensor.shape) == 3:
                        single_mask_tensor = single_mask_tensor.squeeze(0)
                    
                    single_mask = single_mask_tensor.numpy()
                    final_mask = self._apply_filters(single_mask, mask_blur, mask_offset)
                    
                    result_masks[part] = final_mask  # Always add mask, even if empty
            
            return result_masks
            
        except Exception as e:
            print(f"❌ Error in human parts segmentation: {e}")
            return {}
        finally:
            # Clean up model if not needed
            self.clear_model()

    def _apply_filters(self, mask: np.ndarray, mask_blur: int = 0, mask_offset: int = 0) -> np.ndarray:
        """Apply filtering to mask - new method from updated repo."""
        if mask_blur == 0 and mask_offset == 0:
            return mask
        
        try:
            # Convert to PIL for filtering
            mask_image = Image.fromarray((mask * 255).astype(np.uint8))
            
            # Apply blur if specified
            if mask_blur > 0:
                mask_image = mask_image.filter(ImageFilter.GaussianBlur(radius=mask_blur))
            
            # Apply offset if specified
            if mask_offset != 0:
                if mask_offset > 0:
                    mask_image = mask_image.filter(ImageFilter.MaxFilter(size=mask_offset * 2 + 1))
                else:
                    mask_image = mask_image.filter(ImageFilter.MinFilter(size=-mask_offset * 2 + 1))
            
            # Convert back to numpy
            filtered_mask = np.array(mask_image).astype(np.float32) / 255.0
            return filtered_mask
            
        except Exception as e:
            print(f"❌ Error applying filters: {e}")
            return mask