styling
Browse files- app.py +8 -1
- src/display/css_html_js.py +2 -2
- src/leaderboard/read_evals.py +2 -2
app.py
CHANGED
@@ -62,8 +62,15 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
62 |
def init_leaderboard(dataframe):
|
63 |
#if dataframe is None or dataframe.empty:
|
64 |
#raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
return gr.Dataframe(
|
66 |
-
value=
|
67 |
datatype="markdown",
|
68 |
wrap=True,
|
69 |
show_fullscreen_button=False,
|
|
|
62 |
def init_leaderboard(dataframe):
|
63 |
#if dataframe is None or dataframe.empty:
|
64 |
#raise ValueError("Leaderboard DataFrame is empty or None.")
|
65 |
+
styler = dataframe.style.apply(
|
66 |
+
lambda rows: [
|
67 |
+
"background-color: red;color:white" if (value >0) else "background-color: green;color:white" for value in rows
|
68 |
+
],
|
69 |
+
subset=["Contamination Score"],
|
70 |
+
)
|
71 |
+
|
72 |
return gr.Dataframe(
|
73 |
+
value=styler,
|
74 |
datatype="markdown",
|
75 |
wrap=True,
|
76 |
show_fullscreen_button=False,
|
src/display/css_html_js.py
CHANGED
@@ -22,11 +22,11 @@ custom_css = """
|
|
22 |
}
|
23 |
|
24 |
#leaderboard-table {
|
25 |
-
margin-top:
|
26 |
}
|
27 |
|
28 |
#leaderboard-table-lite {
|
29 |
-
margin-top:
|
30 |
}
|
31 |
|
32 |
#search-bar-table-box > div:first-child {
|
|
|
22 |
}
|
23 |
|
24 |
#leaderboard-table {
|
25 |
+
margin-top: 10px
|
26 |
}
|
27 |
|
28 |
#leaderboard-table-lite {
|
29 |
+
margin-top: 10px
|
30 |
}
|
31 |
|
32 |
#search-bar-table-box > div:first-child {
|
src/leaderboard/read_evals.py
CHANGED
@@ -137,8 +137,8 @@ class EvalResult:
|
|
137 |
for eval_dim in EvalDimensions:
|
138 |
dimension_name = eval_dim.value.col_name
|
139 |
dimension_value = self.results[eval_dim.value.metric]
|
140 |
-
if dimension_name == "Contamination Score":
|
141 |
-
|
142 |
data_dict[dimension_name] = dimension_value
|
143 |
|
144 |
return data_dict
|
|
|
137 |
for eval_dim in EvalDimensions:
|
138 |
dimension_name = eval_dim.value.col_name
|
139 |
dimension_value = self.results[eval_dim.value.metric]
|
140 |
+
#if dimension_name == "Contamination Score":
|
141 |
+
# dimension_value = make_contamination_red(dimension_value)
|
142 |
data_dict[dimension_name] = dimension_value
|
143 |
|
144 |
return data_dict
|