karimouda commited on
Commit
dcc7731
·
1 Parent(s): 9abca8d

Code cleanup

Browse files
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import gradio as gr
2
  import pandas as pd
3
  from apscheduler.schedulers.background import BackgroundScheduler
4
- #from huggingface_hub import snapshot_download
5
  import re
6
  import plotly.graph_objects as go
7
 
@@ -36,35 +35,18 @@ from src.leaderboard.read_evals import get_model_answers_html_file
36
  skills = ['MMLU', 'General Knowledge', 'Reasoning & Math', 'Translation (incl Dialects)', 'Trust & Safety', 'Writing (incl Dialects)', 'RAG QA', 'Reading Comprehension', 'Arabic Language & Grammar', 'Diacritization', 'Dialect Detection', 'Sentiment Analysis', 'Summarization', 'Instruction Following', 'Transliteration', 'Paraphrasing', 'Entity Extraction', 'Long Context', 'Coding', 'Hallucination', 'Function Calling', 'Structuring']
37
 
38
 
39
- def restart_space():
40
- API.restart_space(repo_id=REPO_ID)
41
-
42
- ### Space initialisation
43
- """
44
- try:
45
- print(EVAL_REQUESTS_PATH)
46
- snapshot_download(
47
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
48
- )
49
- except Exception:
50
- restart_space()
51
- try:
52
- print(EVAL_RESULTS_PATH)
53
- snapshot_download(
54
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
55
- )
56
- except Exception:
57
- restart_space()
58
- """
59
-
60
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
61
 
62
  (
63
  finished_eval_queue_df,
64
- running_eval_queue_df,
65
  pending_eval_queue_df,
66
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
67
 
 
 
 
 
 
68
  def hide_skill_columns(dataframe, exceptions=[]):
69
  return dataframe[[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default or c.name in exceptions]]
70
 
@@ -115,9 +97,6 @@ def init_leaderboard(dataframe):
115
  def init_skill_leaderboard(dataframe):
116
 
117
 
118
-
119
- ## create selector for model skills, based on the selector filter the dataframe
120
-
121
  skills_dropdown = gr.Dropdown(choices=skills, label="Select Skill", value=skills[0])
122
 
123
  def filter_dataframe(skill):
@@ -126,6 +105,7 @@ def init_skill_leaderboard(dataframe):
126
  new_skill_name = skill+" Score"
127
  filtered_df.rename(columns={skill: new_skill_name}, inplace=True)
128
  filtered_df[new_skill_name] = make_column_bold(filtered_df[new_skill_name])
 
129
  ## reorder columns of filtered_df and insert skill in the middle
130
  filtered_df = filtered_df[list(filtered_df.columns[:4]) + [new_skill_name] + list(filtered_df.columns[4:-1])]
131
  filtered_df["Rank"] = range(1, len(filtered_df) + 1)
@@ -143,6 +123,7 @@ def init_skill_leaderboard(dataframe):
143
 
144
  leaderboard_by_skill = filter_dataframe(skills[0])
145
  skills_dropdown.change(filter_dataframe, inputs=skills_dropdown, outputs=leaderboard_by_skill)
 
146
  return leaderboard_by_skill
147
 
148
 
@@ -159,13 +140,16 @@ def init_size_leaderboard(dataframe):
159
  sizes_dropdown = gr.Dropdown(choices=size_names, label="Select Model Size", value=size_names[0])
160
 
161
  def filter_dataframe(size_name):
 
162
  ##map size name to size key
163
  size_name_mapped_to_key = size_keys[size_names.index(size_name)]
 
164
  ##slice array from 0 to index of size
165
  size_list = size_keys[size_keys.index(size_name_mapped_to_key):]
166
  filtered_df = dataframe[dataframe["Size"].isin(size_list)].reset_index(drop=True)
167
  filtered_df["Rank"] = range(1, len(filtered_df) + 1)
168
  styler = perform_cell_formatting(filtered_df)
 
169
  return gr.Dataframe(
170
  value=styler,
171
  datatype="markdown",
@@ -179,19 +163,18 @@ def init_size_leaderboard(dataframe):
179
 
180
  leaderboard_by_skill = filter_dataframe(size_names[0])
181
  sizes_dropdown.change(filter_dataframe, inputs=sizes_dropdown, outputs=leaderboard_by_skill)
 
182
  return leaderboard_by_skill
183
 
184
  def strip_html_tags(model_name):
185
  return re.sub('<[^<]+?>', '', model_name)
186
-
187
-
188
 
189
  def get_model_info_blocks(chosen_model_name):
190
 
191
  model_names = LEADERBOARD_DF["Model Name"].unique().tolist()
192
  model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
193
-
194
  model_name_full = model_names[model_names_clean.index(chosen_model_name)]
 
195
  filtered_df = LEADERBOARD_DF[LEADERBOARD_DF["Model Name"]==model_name_full].reset_index(drop=True)
196
  skills_bar_df = pd.DataFrame({
197
  'Skills': skills,
@@ -258,14 +241,13 @@ def init_compare_tab(dataframe):
258
 
259
  model_names = dataframe["Model Name"].unique().tolist()
260
  model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
 
261
  with gr.Row():
262
  models_dropdown = gr.Dropdown(choices=model_names_clean, label="Select Models",
263
  value=model_names_clean[0], multiselect=True)
264
 
265
 
266
  def draw_radar_chart(models):
267
- print(models)
268
-
269
 
270
  fig = go.Figure()
271
 
@@ -310,7 +292,9 @@ def init_compare_tab(dataframe):
310
 
311
 
312
  demo = gr.Blocks(css=custom_css)
 
313
  with demo:
 
314
  gr.HTML(TITLE, elem_classes="abl_header")
315
  gr.HTML(INTRODUCTION_TEXT, elem_classes="abl_desc_text")
316
 
@@ -329,9 +313,9 @@ with demo:
329
 
330
  with gr.TabItem("🔬 Deep Dive", elem_id="llm-benchmark-tab-compare", id=4):
331
 
332
-
333
  model_names = LEADERBOARD_DF["Model Name"].unique().tolist()
334
  model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
 
335
  with gr.Row():
336
  models_dropdown = gr.Dropdown(choices=model_names_clean, label="Select Model", value=model_names_clean[0])
337
 
@@ -341,8 +325,10 @@ with demo:
341
  models_dropdown.change(get_model_info_blocks, inputs=models_dropdown, outputs=[model_name,benchmark_score,rank,speed,contamination,size,skills_bar,answers_html])
342
 
343
  with gr.TabItem("🚀 Submit here", elem_id="llm-benchmark-tab-submit", id=5):
 
344
  with gr.Row():
345
  gr.Markdown("# Submit your model", elem_classes="markdown-text")
 
346
  with gr.Column():
347
  gr.Markdown("### Please confirm that you understand and accept the conditions below before submitting your model:")
348
  prereqs_checkboxes = gr.CheckboxGroup(["I have successfully run the ABB benchmark script on my model using my own infrastructure, and I am not using the Leaderboard for testing purposes",
@@ -368,6 +354,7 @@ with demo:
368
  )
369
 
370
  submission_result = gr.Markdown()
 
371
  submit_button.click(
372
  add_new_eval,
373
  [
@@ -375,7 +362,9 @@ with demo:
375
  ],
376
  submission_result,
377
  )
 
378
  with gr.Column():
 
379
  with gr.Row():
380
  gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
381
 
@@ -391,17 +380,6 @@ with demo:
391
  datatype=EVAL_TYPES,
392
  row_count=5,
393
  )
394
- with gr.Accordion(
395
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
396
- open=False,
397
- ):
398
- with gr.Row():
399
- running_eval_table = gr.components.Dataframe(
400
- value=running_eval_queue_df,
401
- headers=EVAL_COLS,
402
- datatype=EVAL_TYPES,
403
- row_count=5,
404
- )
405
 
406
  with gr.Accordion(
407
  f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
@@ -416,6 +394,7 @@ with demo:
416
  )
417
 
418
  with gr.TabItem("📝 FAQ", elem_id="llm-benchmark-tab-faq", id=6):
 
419
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
420
 
421
  with gr.Row():
@@ -423,7 +402,7 @@ with demo:
423
  citation_button = gr.Textbox(
424
  value=CITATION_BUTTON_TEXT,
425
  label=CITATION_BUTTON_LABEL,
426
- lines=10,
427
  elem_id="citation-button",
428
  show_copy_button=True,
429
  )
 
1
  import gradio as gr
2
  import pandas as pd
3
  from apscheduler.schedulers.background import BackgroundScheduler
 
4
  import re
5
  import plotly.graph_objects as go
6
 
 
35
  skills = ['MMLU', 'General Knowledge', 'Reasoning & Math', 'Translation (incl Dialects)', 'Trust & Safety', 'Writing (incl Dialects)', 'RAG QA', 'Reading Comprehension', 'Arabic Language & Grammar', 'Diacritization', 'Dialect Detection', 'Sentiment Analysis', 'Summarization', 'Instruction Following', 'Transliteration', 'Paraphrasing', 'Entity Extraction', 'Long Context', 'Coding', 'Hallucination', 'Function Calling', 'Structuring']
36
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
39
 
40
  (
41
  finished_eval_queue_df,
 
42
  pending_eval_queue_df,
43
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
44
 
45
+
46
+ def restart_space():
47
+ API.restart_space(repo_id=REPO_ID)
48
+
49
+
50
  def hide_skill_columns(dataframe, exceptions=[]):
51
  return dataframe[[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default or c.name in exceptions]]
52
 
 
97
  def init_skill_leaderboard(dataframe):
98
 
99
 
 
 
 
100
  skills_dropdown = gr.Dropdown(choices=skills, label="Select Skill", value=skills[0])
101
 
102
  def filter_dataframe(skill):
 
105
  new_skill_name = skill+" Score"
106
  filtered_df.rename(columns={skill: new_skill_name}, inplace=True)
107
  filtered_df[new_skill_name] = make_column_bold(filtered_df[new_skill_name])
108
+
109
  ## reorder columns of filtered_df and insert skill in the middle
110
  filtered_df = filtered_df[list(filtered_df.columns[:4]) + [new_skill_name] + list(filtered_df.columns[4:-1])]
111
  filtered_df["Rank"] = range(1, len(filtered_df) + 1)
 
123
 
124
  leaderboard_by_skill = filter_dataframe(skills[0])
125
  skills_dropdown.change(filter_dataframe, inputs=skills_dropdown, outputs=leaderboard_by_skill)
126
+
127
  return leaderboard_by_skill
128
 
129
 
 
140
  sizes_dropdown = gr.Dropdown(choices=size_names, label="Select Model Size", value=size_names[0])
141
 
142
  def filter_dataframe(size_name):
143
+
144
  ##map size name to size key
145
  size_name_mapped_to_key = size_keys[size_names.index(size_name)]
146
+
147
  ##slice array from 0 to index of size
148
  size_list = size_keys[size_keys.index(size_name_mapped_to_key):]
149
  filtered_df = dataframe[dataframe["Size"].isin(size_list)].reset_index(drop=True)
150
  filtered_df["Rank"] = range(1, len(filtered_df) + 1)
151
  styler = perform_cell_formatting(filtered_df)
152
+
153
  return gr.Dataframe(
154
  value=styler,
155
  datatype="markdown",
 
163
 
164
  leaderboard_by_skill = filter_dataframe(size_names[0])
165
  sizes_dropdown.change(filter_dataframe, inputs=sizes_dropdown, outputs=leaderboard_by_skill)
166
+
167
  return leaderboard_by_skill
168
 
169
  def strip_html_tags(model_name):
170
  return re.sub('<[^<]+?>', '', model_name)
 
 
171
 
172
  def get_model_info_blocks(chosen_model_name):
173
 
174
  model_names = LEADERBOARD_DF["Model Name"].unique().tolist()
175
  model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
 
176
  model_name_full = model_names[model_names_clean.index(chosen_model_name)]
177
+
178
  filtered_df = LEADERBOARD_DF[LEADERBOARD_DF["Model Name"]==model_name_full].reset_index(drop=True)
179
  skills_bar_df = pd.DataFrame({
180
  'Skills': skills,
 
241
 
242
  model_names = dataframe["Model Name"].unique().tolist()
243
  model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
244
+
245
  with gr.Row():
246
  models_dropdown = gr.Dropdown(choices=model_names_clean, label="Select Models",
247
  value=model_names_clean[0], multiselect=True)
248
 
249
 
250
  def draw_radar_chart(models):
 
 
251
 
252
  fig = go.Figure()
253
 
 
292
 
293
 
294
  demo = gr.Blocks(css=custom_css)
295
+
296
  with demo:
297
+
298
  gr.HTML(TITLE, elem_classes="abl_header")
299
  gr.HTML(INTRODUCTION_TEXT, elem_classes="abl_desc_text")
300
 
 
313
 
314
  with gr.TabItem("🔬 Deep Dive", elem_id="llm-benchmark-tab-compare", id=4):
315
 
 
316
  model_names = LEADERBOARD_DF["Model Name"].unique().tolist()
317
  model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
318
+
319
  with gr.Row():
320
  models_dropdown = gr.Dropdown(choices=model_names_clean, label="Select Model", value=model_names_clean[0])
321
 
 
325
  models_dropdown.change(get_model_info_blocks, inputs=models_dropdown, outputs=[model_name,benchmark_score,rank,speed,contamination,size,skills_bar,answers_html])
326
 
327
  with gr.TabItem("🚀 Submit here", elem_id="llm-benchmark-tab-submit", id=5):
328
+
329
  with gr.Row():
330
  gr.Markdown("# Submit your model", elem_classes="markdown-text")
331
+
332
  with gr.Column():
333
  gr.Markdown("### Please confirm that you understand and accept the conditions below before submitting your model:")
334
  prereqs_checkboxes = gr.CheckboxGroup(["I have successfully run the ABB benchmark script on my model using my own infrastructure, and I am not using the Leaderboard for testing purposes",
 
354
  )
355
 
356
  submission_result = gr.Markdown()
357
+
358
  submit_button.click(
359
  add_new_eval,
360
  [
 
362
  ],
363
  submission_result,
364
  )
365
+
366
  with gr.Column():
367
+
368
  with gr.Row():
369
  gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
370
 
 
380
  datatype=EVAL_TYPES,
381
  row_count=5,
382
  )
 
 
 
 
 
 
 
 
 
 
 
383
 
384
  with gr.Accordion(
385
  f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
 
394
  )
395
 
396
  with gr.TabItem("📝 FAQ", elem_id="llm-benchmark-tab-faq", id=6):
397
+
398
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
399
 
400
  with gr.Row():
 
402
  citation_button = gr.Textbox(
403
  value=CITATION_BUTTON_TEXT,
404
  label=CITATION_BUTTON_LABEL,
405
+ lines=8,
406
  elem_id="citation-button",
407
  show_copy_button=True,
408
  )
src/about.py CHANGED
@@ -38,19 +38,6 @@ class EvalDimensions(Enum):
38
 
39
 
40
 
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
- NUM_FEWSHOT = 0 # Change with your few shot
50
- # ---------------------------------------------------
51
-
52
-
53
-
54
  # Your leaderboard name
55
  TITLE = """<div ><img class='abl_header_image' src='https://huggingface.co/spaces/silma-ai/Arabic-LLM-Broad-Leaderboard/resolve/main/src/images/abl_logo.png' ></div>"""
56
 
@@ -166,7 +153,6 @@ EVALUATION_QUEUE_TEXT = """
166
 
167
  CITATION_BUTTON_LABEL = "Copy the following snippet to cite the Leaderboard"
168
  CITATION_BUTTON_TEXT = r"""
169
-
170
  @misc{ABL,
171
  author = {SILMA.AI Team},
172
  title = {Arabic Broad Leaderboard},
 
38
 
39
 
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  # Your leaderboard name
42
  TITLE = """<div ><img class='abl_header_image' src='https://huggingface.co/spaces/silma-ai/Arabic-LLM-Broad-Leaderboard/resolve/main/src/images/abl_logo.png' ></div>"""
43
 
 
153
 
154
  CITATION_BUTTON_LABEL = "Copy the following snippet to cite the Leaderboard"
155
  CITATION_BUTTON_TEXT = r"""
 
156
  @misc{ABL,
157
  author = {SILMA.AI Team},
158
  title = {Arabic Broad Leaderboard},
src/display/css_html_js.py CHANGED
@@ -108,13 +108,13 @@ custom_css = """
108
 
109
  }
110
  .abl_header{
111
- margin:0px auto 0px auto;
112
  }
113
  .abl_header_image{
114
- margin:0px auto 0px auto;
115
- width:50%;
116
- display:block;
117
- border-radius: 10px;
118
  }
119
 
120
  .tabs{
@@ -164,11 +164,3 @@ color:unset;
164
  margin-top:20px;
165
  }
166
  """
167
-
168
- get_window_url_params = """
169
- function(url_params) {
170
- const params = new URLSearchParams(window.location.search);
171
- url_params = Object.fromEntries(params);
172
- return url_params;
173
- }
174
- """
 
108
 
109
  }
110
  .abl_header{
111
+ margin:0px auto 0px auto;
112
  }
113
  .abl_header_image{
114
+ margin:0px auto 0px auto;
115
+ width:50%;
116
+ display:block;
117
+ border-radius: 10px;
118
  }
119
 
120
  .tabs{
 
164
  margin-top:20px;
165
  }
166
  """
 
 
 
 
 
 
 
 
src/display/formatting.py CHANGED
@@ -6,11 +6,6 @@ def make_clickable_model(model_name):
6
  link = f"https://huggingface.co/{model_name}"
7
  return model_hyperlink(link, model_name)
8
 
9
- def make_contamination_red(contamination_score):
10
- if contamination_score <=0:
11
- return f"<p class='clean' style='display:block;background-color:green !important;padding:5px;color: white; text-align: center;margin:0px' title='Clean model!'>{round((contamination_score))}</p>"
12
- else:
13
- return f"<p class='contaminated' style='display:block;background-color:red !important;padding:5px;color: white; text-align: center;margin:0px' title='Contaminated model!'>{round((contamination_score),2)}</p>"
14
 
15
  def styled_error(error):
16
  return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
@@ -27,6 +22,3 @@ def styled_message(message):
27
  def has_no_nan_values(df, columns):
28
  return df[columns].notna().all(axis=1)
29
 
30
-
31
- def has_nan_values(df, columns):
32
- return df[columns].isna().any(axis=1)
 
6
  link = f"https://huggingface.co/{model_name}"
7
  return model_hyperlink(link, model_name)
8
 
 
 
 
 
 
9
 
10
  def styled_error(error):
11
  return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
 
22
  def has_no_nan_values(df, columns):
23
  return df[columns].notna().all(axis=1)
24
 
 
 
 
src/display/utils.py CHANGED
@@ -1,8 +1,4 @@
1
  from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
  from src.about import EvalDimensions
7
 
8
  def fields(raw_class):
@@ -24,12 +20,8 @@ class ColumnContent:
24
  auto_eval_column_dict = []
25
  # Init
26
  auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
27
-
28
  auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
29
  auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Size", "str", True, False)])
30
-
31
-
32
- #auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
33
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
34
  #Scores
35
  auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score (0-10)", "number", True)])
@@ -38,17 +30,6 @@ for eval_dim in EvalDimensions:
38
  auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
39
  else:
40
  auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", False)])
41
- # Model information
42
-
43
- #auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
44
- #auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
45
- #auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
46
- #auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
47
- #auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("License", "str", False)])
48
- #auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
49
- #auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Popularity (Likes)", "number", False)])
50
- #auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
51
- #auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
52
 
53
 
54
  # We use make dataclass to dynamically fill the scores from Tasks
@@ -59,60 +40,8 @@ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=
59
  class EvalQueueColumn: # Queue column
60
  model = ColumnContent("model", "markdown", True)
61
  revision = ColumnContent("revision", "str", True)
62
- #private = ColumnContent("private", "bool", True)
63
- #precision = ColumnContent("precision", "str", True)
64
- #weight_type = ColumnContent("weight_type", "str", "Original")
65
  status = ColumnContent("status", "str", True)
66
 
67
- ## All the model information that we might need
68
- @dataclass
69
- class ModelDetails:
70
- name: str
71
- display_name: str = ""
72
- symbol: str = "" # emoji
73
-
74
- """
75
- class ModelType(Enum):
76
-
77
-
78
- PT = ModelDetails(name="pretrained", symbol="🟢")
79
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
80
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
81
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
82
- Unknown = ModelDetails(name="", symbol="?")
83
-
84
- def to_str(self, separator=" "):
85
- return f"{self.value.symbol}{separator}{self.value.name}"
86
-
87
- @staticmethod
88
- def from_str(type):
89
- if "fine-tuned" in type or "🔶" in type:
90
- return ModelType.FT
91
- if "pretrained" in type or "🟢" in type:
92
- return ModelType.PT
93
- if "RL-tuned" in type or "🟦" in type:
94
- return ModelType.RL
95
- if "instruction-tuned" in type or "⭕" in type:
96
- return ModelType.IFT
97
- return ModelType.Unknown
98
-
99
- class WeightType(Enum):
100
- Adapter = ModelDetails("Adapter")
101
- Original = ModelDetails("Original")
102
- Delta = ModelDetails("Delta")
103
-
104
- class Precision(Enum):
105
- float16 = ModelDetails("float16")
106
- bfloat16 = ModelDetails("bfloat16")
107
- Unknown = ModelDetails("?")
108
-
109
- def from_str(precision):
110
- if precision in ["torch.float16", "float16"]:
111
- return Precision.float16
112
- if precision in ["torch.bfloat16", "bfloat16"]:
113
- return Precision.bfloat16
114
- return Precision.Unknown
115
- """
116
  # Column selection
117
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
118
 
 
1
  from dataclasses import dataclass, make_dataclass
 
 
 
 
2
  from src.about import EvalDimensions
3
 
4
  def fields(raw_class):
 
20
  auto_eval_column_dict = []
21
  # Init
22
  auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
 
23
  auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
24
  auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Size", "str", True, False)])
 
 
 
25
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
26
  #Scores
27
  auto_eval_column_dict.append(["average_score", ColumnContent, ColumnContent("Benchmark Score (0-10)", "number", True)])
 
30
  auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
31
  else:
32
  auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", False)])
 
 
 
 
 
 
 
 
 
 
 
33
 
34
 
35
  # We use make dataclass to dynamically fill the scores from Tasks
 
40
  class EvalQueueColumn: # Queue column
41
  model = ColumnContent("model", "markdown", True)
42
  revision = ColumnContent("revision", "str", True)
 
 
 
43
  status = ColumnContent("status", "str", True)
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  # Column selection
46
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
47
 
src/envs.py CHANGED
@@ -19,7 +19,5 @@ CACHE_PATH=os.getenv("HF_HOME", ".")
19
  # Local caches
20
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "requests")
21
  EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
 
25
  API = HfApi(token=TOKEN)
 
19
  # Local caches
20
  EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "requests")
21
  EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "results")
 
 
22
 
23
  API = HfApi(token=TOKEN)
src/leaderboard/read_evals.py CHANGED
@@ -1,14 +1,11 @@
1
  import glob
2
  import json
3
- import math
4
  import os
5
  from dataclasses import dataclass
6
-
7
  import dateutil
8
- import numpy as np
9
 
10
- from src.display.formatting import make_clickable_model, make_contamination_red
11
- from src.display.utils import AutoEvalColumn, EvalDimensions#, ModelType, Precision, WeightType
12
  from src.submission.check_validity import is_model_on_hub
13
 
14
 
@@ -20,17 +17,9 @@ class EvalResult:
20
  full_model: str # org/model (path on hub)
21
  org: str
22
  model: str
23
- #revision: str # commit hash, "" if main
24
  results: dict
25
- #precision: Precision = Precision.Unknown
26
- #model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
  model_source: str = "" # HF, API, ...
28
  model_category: str = "" #Nano, Small, Medium, Large
29
- #weight_type: WeightType = WeightType.Original # Original or Adapter
30
- #architecture: str = "Unknown"
31
- #license: str = "?"
32
- #likes: int = 0
33
- #num_params: int = 0
34
  date: str = "" # submission date of request file
35
  still_on_hub: bool = False
36
 
@@ -42,41 +31,31 @@ class EvalResult:
42
 
43
  config = data.get("config")
44
 
45
- # Precision
46
- #precision = Precision.from_str(config.get("model_dtype"))
47
-
48
  # Get model and org
49
  org_and_model = config.get("model", config.get("model_args", None))
50
- print("******* org_and_model **********", config)
51
  org_and_model = org_and_model.split("/", 1)
52
 
53
  if len(org_and_model) == 1:
54
  org = None
55
  model = org_and_model[0]
56
- result_key = f"{model}"#_{precision.value.name}
57
  else:
58
  org = org_and_model[0]
59
  model = org_and_model[1]
60
- result_key = f"{org}_{model}"#_{precision.value.name}
61
  full_model = "/".join(org_and_model)
62
 
63
- still_on_hub, _, model_config = is_model_on_hub(
64
  full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
65
  )
66
 
67
- """
68
- architecture = "?"
69
- if model_config is not None:
70
- architectures = getattr(model_config, "architectures", None)
71
- if architectures:
72
- architecture = ";".join(architectures)
73
- """
74
 
75
  # Extract results available in this file (some results are split in several files)
76
  results = {}
77
 
78
  results_obj = data.get("results")
79
- print(results_obj)
80
  results["average_score"] = results_obj.get("average_score")
81
  results["speed"] = results_obj.get("speed")
82
  results["contamination_score"] = results_obj.get("contamination_score")
@@ -98,50 +77,30 @@ class EvalResult:
98
  model=model,
99
  model_source=config.get("model_source", ""),
100
  model_category=config.get("model_category", ""),
101
- #num_params=config.get("params", 0),
102
- #license=config.get("license", "?"),
103
- #likes=config.get("likes", -1),
104
  results=results,
105
- #precision=precision,
106
- #revision= config.get("model_sha", ""),
107
  still_on_hub=still_on_hub,
108
- #architecture=architecture
109
  )
110
 
111
  def update_with_request_file(self, requests_path):
112
  """Finds the relevant request file for the current model and updates info with it"""
113
- request_file = get_request_file_for_model(requests_path, self.full_model) #, self.precision.value.name
114
  try:
115
  with open(request_file, "r") as f:
116
  request = json.load(f)
117
 
118
- #self.model_type = ModelType.from_str(request.get("model_type", ""))
119
- #self.weight_type = WeightType[request.get("weight_type", "Original")]
120
- #self.license = request.get("license", "?")
121
- #self.likes = request.get("likes", 0)
122
- #self.params = request.get("params", 0)
123
  self.date = request.get("submitted_time", "")
124
  except Exception:
125
- print(f"Could not find request file for {self.org}/{self.model}") # with precision {self.precision.value.name}
126
 
127
  def to_dict(self):
128
  """Converts the Eval Result to a dict compatible with our dataframe display"""
129
  average_score = self.results["average_score"]
130
  data_dict = {
131
  "eval_name": self.eval_name, # not a column, just a save name,
132
- #AutoEvalColumn.precision.name: self.precision.value.name,
133
  AutoEvalColumn.model_source.name: self.model_source,
134
  AutoEvalColumn.model_category.name: self.model_category,
135
- #AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
136
- #AutoEvalColumn.weight_type.name: self.weight_type.value.name,
137
- #AutoEvalColumn.architecture.name: self.architecture,
138
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
139
- #AutoEvalColumn.revision.name: self.revision,
140
  AutoEvalColumn.average_score.name: average_score,
141
- #AutoEvalColumn.license.name: self.license,
142
- #AutoEvalColumn.likes.name: self.likes,
143
- #AutoEvalColumn.params.name: self.num_params,
144
- #AutoEvalColumn.still_on_hub.name: self.still_on_hub,
145
  }
146
 
147
  for eval_dim in EvalDimensions:
@@ -159,11 +118,11 @@ class EvalResult:
159
  return data_dict
160
 
161
 
162
- def get_request_file_for_model(requests_path, model_name): #,precision
163
  """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
164
  request_files = os.path.join(
165
  requests_path,
166
- f"{model_name}_eval_request_*.json",
167
  )
168
 
169
  request_files = glob.glob(request_files)
@@ -176,7 +135,6 @@ def get_request_file_for_model(requests_path, model_name): #,precision
176
  req_content = json.load(f)
177
  if (
178
  req_content["status"] in ["FINISHED"]
179
- #and req_content["precision"] == precision.split(".")[-1]
180
  ):
181
  request_file = tmp_request_file
182
  return request_file
@@ -187,8 +145,8 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
187
  model_result_filepaths = []
188
 
189
  for root, _, files in os.walk(results_path):
190
- print("HERE",files)
191
- # We should only have json files in model results ##we allow HTML files
192
  #if len(files) == 0 or any([not f.endswith(".json") for f in files]):
193
  # continue
194
  files = [f for f in files if f.endswith(".json")]
@@ -199,7 +157,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
199
  except dateutil.parser._parser.ParserError as e:
200
  print("Error",e)
201
  files = [files[-1]]
202
- print(files)
203
  for file in files:
204
  model_result_filepaths.append(os.path.join(root, file))
205
 
@@ -207,7 +165,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
207
  for model_result_filepath in model_result_filepaths:
208
  # Creation of result
209
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
210
- eval_result.update_with_request_file(requests_path)
211
 
212
  # Store results of same eval together
213
  eval_name = eval_result.eval_name
@@ -217,20 +175,17 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
217
  eval_results[eval_name] = eval_result
218
 
219
  results = []
220
- #print(eval_results.values())
221
  for v in eval_results.values():
222
  try:
223
- print(v.to_dict())
224
  v.to_dict() # we test if the dict version is complete
225
  results.append(v)
226
  except KeyError: # not all eval values present
227
  print("Key error in eval result, skipping")
228
 
229
- print(v)
230
- print(v.to_dict())
231
  continue
232
 
233
- print(results)
234
  return results
235
 
236
 
 
1
  import glob
2
  import json
 
3
  import os
4
  from dataclasses import dataclass
 
5
  import dateutil
 
6
 
7
+ from src.display.formatting import make_clickable_model
8
+ from src.display.utils import AutoEvalColumn, EvalDimensions
9
  from src.submission.check_validity import is_model_on_hub
10
 
11
 
 
17
  full_model: str # org/model (path on hub)
18
  org: str
19
  model: str
 
20
  results: dict
 
 
21
  model_source: str = "" # HF, API, ...
22
  model_category: str = "" #Nano, Small, Medium, Large
 
 
 
 
 
23
  date: str = "" # submission date of request file
24
  still_on_hub: bool = False
25
 
 
31
 
32
  config = data.get("config")
33
 
 
 
 
34
  # Get model and org
35
  org_and_model = config.get("model", config.get("model_args", None))
36
+
37
  org_and_model = org_and_model.split("/", 1)
38
 
39
  if len(org_and_model) == 1:
40
  org = None
41
  model = org_and_model[0]
42
+ result_key = f"{model}"
43
  else:
44
  org = org_and_model[0]
45
  model = org_and_model[1]
46
+ result_key = f"{org}_{model}"
47
  full_model = "/".join(org_and_model)
48
 
49
+ still_on_hub, _, _ = is_model_on_hub(
50
  full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
51
  )
52
 
 
 
 
 
 
 
 
53
 
54
  # Extract results available in this file (some results are split in several files)
55
  results = {}
56
 
57
  results_obj = data.get("results")
58
+
59
  results["average_score"] = results_obj.get("average_score")
60
  results["speed"] = results_obj.get("speed")
61
  results["contamination_score"] = results_obj.get("contamination_score")
 
77
  model=model,
78
  model_source=config.get("model_source", ""),
79
  model_category=config.get("model_category", ""),
 
 
 
80
  results=results,
 
 
81
  still_on_hub=still_on_hub,
 
82
  )
83
 
84
  def update_with_request_file(self, requests_path):
85
  """Finds the relevant request file for the current model and updates info with it"""
86
+ request_file = get_request_file_for_model(requests_path, self.full_model)
87
  try:
88
  with open(request_file, "r") as f:
89
  request = json.load(f)
90
 
 
 
 
 
 
91
  self.date = request.get("submitted_time", "")
92
  except Exception:
93
+ print(f"Could not find request file for {self.org}/{self.model}")
94
 
95
  def to_dict(self):
96
  """Converts the Eval Result to a dict compatible with our dataframe display"""
97
  average_score = self.results["average_score"]
98
  data_dict = {
99
  "eval_name": self.eval_name, # not a column, just a save name,
 
100
  AutoEvalColumn.model_source.name: self.model_source,
101
  AutoEvalColumn.model_category.name: self.model_category,
 
 
 
102
  AutoEvalColumn.model.name: make_clickable_model(self.full_model),
 
103
  AutoEvalColumn.average_score.name: average_score,
 
 
 
 
104
  }
105
 
106
  for eval_dim in EvalDimensions:
 
118
  return data_dict
119
 
120
 
121
+ def get_request_file_for_model(requests_path, model_name):
122
  """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
123
  request_files = os.path.join(
124
  requests_path,
125
+ f"{model_name}_eval_request.json",
126
  )
127
 
128
  request_files = glob.glob(request_files)
 
135
  req_content = json.load(f)
136
  if (
137
  req_content["status"] in ["FINISHED"]
 
138
  ):
139
  request_file = tmp_request_file
140
  return request_file
 
145
  model_result_filepaths = []
146
 
147
  for root, _, files in os.walk(results_path):
148
+
149
+ ## we allow HTML files now
150
  #if len(files) == 0 or any([not f.endswith(".json") for f in files]):
151
  # continue
152
  files = [f for f in files if f.endswith(".json")]
 
157
  except dateutil.parser._parser.ParserError as e:
158
  print("Error",e)
159
  files = [files[-1]]
160
+
161
  for file in files:
162
  model_result_filepaths.append(os.path.join(root, file))
163
 
 
165
  for model_result_filepath in model_result_filepaths:
166
  # Creation of result
167
  eval_result = EvalResult.init_from_json_file(model_result_filepath)
168
+ #eval_result.update_with_request_file(requests_path) ##not needed, save processing time
169
 
170
  # Store results of same eval together
171
  eval_name = eval_result.eval_name
 
175
  eval_results[eval_name] = eval_result
176
 
177
  results = []
178
+
179
  for v in eval_results.values():
180
  try:
181
+
182
  v.to_dict() # we test if the dict version is complete
183
  results.append(v)
184
  except KeyError: # not all eval values present
185
  print("Key error in eval result, skipping")
186
 
 
 
187
  continue
188
 
 
189
  return results
190
 
191
 
src/populate.py CHANGED
@@ -31,12 +31,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
31
  df[col] = df[col].round(2)
32
 
33
  df["Benchmark Score (0-10)"] = df["Benchmark Score (0-10)"].astype(str)
34
- print(df["Benchmark Score (0-10)"])
35
 
36
- print("###############\n\n\n\n\n\n###############")
37
-
38
- print(df)
39
- print(df.info())
40
 
41
 
42
  return df
@@ -64,10 +59,10 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
64
  # this is a folder
65
 
66
  sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(f"{save_path}/{entry}/{e}") ]#and not e.startswith(".")
67
- print(f"Sub entries: {sub_entries}")
68
  for sub_entry in sub_entries:
69
  file_path = os.path.join(save_path, entry, sub_entry)
70
- print(f"{file_path}")
71
 
72
  with open(file_path) as fp:
73
  data = json.load(fp)
@@ -78,10 +73,8 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
78
 
79
 
80
  pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
81
- print(pending_list)
82
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
83
  finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
84
  df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
85
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
86
  df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
87
- return df_finished[cols], df_running[cols], df_pending[cols]
 
31
  df[col] = df[col].round(2)
32
 
33
  df["Benchmark Score (0-10)"] = df["Benchmark Score (0-10)"].astype(str)
 
34
 
 
 
 
 
35
 
36
 
37
  return df
 
59
  # this is a folder
60
 
61
  sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(f"{save_path}/{entry}/{e}") ]#and not e.startswith(".")
62
+
63
  for sub_entry in sub_entries:
64
  file_path = os.path.join(save_path, entry, sub_entry)
65
+
66
 
67
  with open(file_path) as fp:
68
  data = json.load(fp)
 
73
 
74
 
75
  pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
76
+
 
77
  finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
78
  df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
 
79
  df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
80
+ return df_finished[cols], df_pending[cols]
src/submission/check_validity.py CHANGED
@@ -65,7 +65,7 @@ def get_model_size(model_info: ModelInfo): #, precision: str
65
  model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
  except (AttributeError, TypeError):
67
  return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
- print("******* model size **********",model_size)
69
  size_factor = 1#8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
  model_size = size_factor * model_size
71
  return model_size
@@ -88,7 +88,7 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
88
  continue
89
  with open(os.path.join(root, file), "r") as f:
90
  info = json.load(f)
91
- file_names.append(f"{info['model']}")#_{info['revision']}_{info['precision']}
92
 
93
  # Select organisation
94
  if info["model"].count("/") == 0 or "submitted_time" not in info:
 
65
  model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
  except (AttributeError, TypeError):
67
  return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
+
69
  size_factor = 1#8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
  model_size = size_factor * model_size
71
  return model_size
 
88
  continue
89
  with open(os.path.join(root, file), "r") as f:
90
  info = json.load(f)
91
+ file_names.append(f"{info['model']}")
92
 
93
  # Select organisation
94
  if info["model"].count("/") == 0 or "submitted_time" not in info:
src/submission/submit.py CHANGED
@@ -18,11 +18,6 @@ USERS_TO_SUBMISSION_DATES = None
18
  def add_new_eval(
19
  model: str,
20
  progress=gr.Progress()
21
- #base_model: str,
22
- #revision: str,
23
- #precision: str,
24
- #weight_type: str,
25
- #model_type: str,
26
  ):
27
  global REQUESTED_MODELS
28
  global USERS_TO_SUBMISSION_DATES
@@ -37,18 +32,19 @@ def add_new_eval(
37
  user_name = model.split("/")[0]
38
  model_path = model.split("/")[1]
39
 
40
- #precision = precision.split(" ")[0]
41
  current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
42
 
43
 
44
  progress(0.1, desc=f"Checking model {model} on hub")
45
 
46
- if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True): #revision=revision
47
  yield styled_error("Model does not exist on HF Hub. Please select a valid model name.")
48
  return
49
 
50
- ##check for org banning
51
  progress(0.2, desc=f"Checking for banned orgs")
 
 
52
  banned_orgs = [{
53
  'org_name':'TEMPLATE',
54
  'banning_reason':'Submitting contaminated models'
@@ -60,34 +56,16 @@ def add_new_eval(
60
  )
61
  return
62
 
63
- """
64
- if model_type is None or model_type == "":
65
- return styled_error("Please select a model type.")
66
-
67
- # Does the model actually exist?
68
- if revision == "":
69
- revision = "main"
70
-
71
- # Is the model on the hub?
72
- if weight_type in ["Delta", "Adapter"]:
73
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
74
- if not base_model_on_hub:
75
- return styled_error(f'Base model "{base_model}" {error}')
76
-
77
- if not weight_type == "Adapter":
78
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
79
- if not model_on_hub:
80
- return styled_error(f'Model "{model}" {error}')
81
- """
82
  # Is the model info correctly filled?
83
  try:
84
- model_info = API.model_info(repo_id=model)#, revision=revision
85
  except Exception:
86
  yield styled_error("Could not get your model information. Please fill it up properly.")
87
  return
88
 
89
  progress(0.3, desc=f"Checking model size")
90
- model_size = get_model_size(model_info=model_info)#, precision=precision
91
 
92
  if model_size>15:
93
  yield styled_error("We currently accept community-submitted models up to 15 billion parameters only. If you represent an organization then please contact us at benchmark@silma.ai")
@@ -131,7 +109,7 @@ def add_new_eval(
131
  progress(0.8, desc=f"Checking same model submissions")
132
 
133
  # Check for duplicate submission
134
- if f"{model}" in REQUESTED_MODELS: #_{revision}_{precision}
135
  yield styled_warning("This model has already been submitted.")
136
  return
137
 
@@ -141,17 +119,11 @@ def add_new_eval(
141
  eval_entry = {
142
  "model": model,
143
  "model_sha": model_info.sha,
144
- #"base_model": base_model,
145
- #"revision": revision,
146
- #"precision": precision,
147
- #"weight_type": weight_type,
148
  "status": "PENDING",
149
  "submitted_time": current_time,
150
- #"model_type": model_type,
151
  "likes": model_info.likes,
152
  "params": model_size,
153
  "license": license,
154
- #"private": False,
155
  }
156
 
157
 
@@ -160,7 +132,7 @@ def add_new_eval(
160
  print("Creating eval file")
161
  OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
162
  os.makedirs(OUT_DIR, exist_ok=True)
163
- out_path = f"{OUT_DIR}/{model_path}_eval_request.json" #_{precision}_{weight_type}
164
 
165
  with open(out_path, "w") as f:
166
  f.write(json.dumps(eval_entry))
@@ -182,7 +154,7 @@ def add_new_eval(
182
  queue_data = json.load(f)
183
 
184
  queue_len = len(queue_data)
185
- print(f"Queue length: {queue_len}")
186
 
187
  if queue_len == 0:
188
  queue_data = []
@@ -192,10 +164,6 @@ def add_new_eval(
192
 
193
  queue_data.append(eval_entry)
194
 
195
- print(queue_data)
196
-
197
- #with open(queue_file, "w") as f:
198
- # json.dump(queue_data, f)
199
 
200
  print("Updating eval queue file")
201
  API.upload_file(
 
18
  def add_new_eval(
19
  model: str,
20
  progress=gr.Progress()
 
 
 
 
 
21
  ):
22
  global REQUESTED_MODELS
23
  global USERS_TO_SUBMISSION_DATES
 
32
  user_name = model.split("/")[0]
33
  model_path = model.split("/")[1]
34
 
 
35
  current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
36
 
37
 
38
  progress(0.1, desc=f"Checking model {model} on hub")
39
 
40
+ if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True):
41
  yield styled_error("Model does not exist on HF Hub. Please select a valid model name.")
42
  return
43
 
44
+
45
  progress(0.2, desc=f"Checking for banned orgs")
46
+
47
+ ##check for org banning
48
  banned_orgs = [{
49
  'org_name':'TEMPLATE',
50
  'banning_reason':'Submitting contaminated models'
 
56
  )
57
  return
58
 
59
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  # Is the model info correctly filled?
61
  try:
62
+ model_info = API.model_info(repo_id=model)
63
  except Exception:
64
  yield styled_error("Could not get your model information. Please fill it up properly.")
65
  return
66
 
67
  progress(0.3, desc=f"Checking model size")
68
+ model_size = get_model_size(model_info=model_info)
69
 
70
  if model_size>15:
71
  yield styled_error("We currently accept community-submitted models up to 15 billion parameters only. If you represent an organization then please contact us at benchmark@silma.ai")
 
109
  progress(0.8, desc=f"Checking same model submissions")
110
 
111
  # Check for duplicate submission
112
+ if f"{model}" in REQUESTED_MODELS:
113
  yield styled_warning("This model has already been submitted.")
114
  return
115
 
 
119
  eval_entry = {
120
  "model": model,
121
  "model_sha": model_info.sha,
 
 
 
 
122
  "status": "PENDING",
123
  "submitted_time": current_time,
 
124
  "likes": model_info.likes,
125
  "params": model_size,
126
  "license": license,
 
127
  }
128
 
129
 
 
132
  print("Creating eval file")
133
  OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
134
  os.makedirs(OUT_DIR, exist_ok=True)
135
+ out_path = f"{OUT_DIR}/{model_path}_eval_request.json"
136
 
137
  with open(out_path, "w") as f:
138
  f.write(json.dumps(eval_entry))
 
154
  queue_data = json.load(f)
155
 
156
  queue_len = len(queue_data)
157
+
158
 
159
  if queue_len == 0:
160
  queue_data = []
 
164
 
165
  queue_data.append(eval_entry)
166
 
 
 
 
 
167
 
168
  print("Updating eval queue file")
169
  API.upload_file(