|
import glob |
|
import json |
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
|
|
import dateutil |
|
import numpy as np |
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, EvalDimensions |
|
from src.submission.check_validity import is_model_on_hub |
|
|
|
|
|
@dataclass |
|
class EvalResult: |
|
"""Represents one full evaluation. Built from a combination of the result and request file for a given run. |
|
""" |
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
|
|
results: dict |
|
|
|
|
|
model_source: str = "" |
|
model_category: str = "" |
|
|
|
|
|
license: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
data = json.load(fp) |
|
|
|
config = data.get("config") |
|
|
|
|
|
|
|
|
|
|
|
org_and_model = config.get("model", config.get("model_args", None)) |
|
print("******* org_and_model **********", config) |
|
org_and_model = org_and_model.split("/", 1) |
|
|
|
if len(org_and_model) == 1: |
|
org = None |
|
model = org_and_model[0] |
|
result_key = f"{model}" |
|
else: |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
result_key = f"{org}_{model}" |
|
full_model = "/".join(org_and_model) |
|
|
|
still_on_hub, _, model_config = is_model_on_hub( |
|
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False |
|
) |
|
|
|
""" |
|
architecture = "?" |
|
if model_config is not None: |
|
architectures = getattr(model_config, "architectures", None) |
|
if architectures: |
|
architecture = ";".join(architectures) |
|
""" |
|
|
|
|
|
results = {} |
|
|
|
results_obj = data.get("results") |
|
print(results_obj) |
|
results["average_score"] = results_obj.get("average_score") |
|
results["speed"] = results_obj.get("speed") |
|
results["contamination_score"] = results_obj.get("contamination_score") |
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
model_source=config.get("model_source", ""), |
|
model_category=config.get("model_category", ""), |
|
num_params=config.get("params", 0), |
|
license=config.get("license", "?"), |
|
likes=config.get("likes", -1), |
|
results=results, |
|
|
|
|
|
still_on_hub=still_on_hub, |
|
|
|
) |
|
|
|
def update_with_request_file(self, requests_path): |
|
"""Finds the relevant request file for the current model and updates info with it""" |
|
request_file = get_request_file_for_model(requests_path, self.full_model) |
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.date = request.get("submitted_time", "") |
|
except Exception: |
|
print(f"Could not find request file for {self.org}/{self.model}") |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
average_score = self.results["average_score"] |
|
data_dict = { |
|
"eval_name": self.eval_name, |
|
|
|
AutoEvalColumn.model_source.name: self.model_source, |
|
AutoEvalColumn.model_category.name: self.model_category, |
|
|
|
|
|
|
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model), |
|
|
|
AutoEvalColumn.average_score.name: average_score, |
|
AutoEvalColumn.license.name: self.license, |
|
AutoEvalColumn.likes.name: self.likes, |
|
AutoEvalColumn.params.name: self.num_params, |
|
|
|
} |
|
|
|
for eval_dim in EvalDimensions: |
|
data_dict[eval_dim.value.col_name] = self.results[eval_dim.value.metric] |
|
|
|
return data_dict |
|
|
|
|
|
def get_request_file_for_model(requests_path, model_name): |
|
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" |
|
request_files = os.path.join( |
|
requests_path, |
|
f"{model_name}_eval_request_*.json", |
|
) |
|
|
|
request_files = glob.glob(request_files) |
|
|
|
|
|
request_file = "" |
|
request_files = sorted(request_files, reverse=True) |
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if ( |
|
req_content["status"] in ["FINISHED"] |
|
|
|
): |
|
request_file = tmp_request_file |
|
return request_file |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
print("HERE",files) |
|
|
|
|
|
|
|
files = [f for f in files if f.endswith(".json")] |
|
|
|
|
|
try: |
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
except dateutil.parser._parser.ParserError as e: |
|
print("Error",e) |
|
files = [files[-1]] |
|
print(files) |
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
eval_result.update_with_request_file(requests_path) |
|
|
|
|
|
eval_name = eval_result.eval_name |
|
if eval_name in eval_results.keys(): |
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) |
|
else: |
|
eval_results[eval_name] = eval_result |
|
|
|
results = [] |
|
|
|
for v in eval_results.values(): |
|
try: |
|
print(v.to_dict()) |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
print("Key error in eval result, skipping") |
|
|
|
print(v) |
|
print(v.to_dict()) |
|
continue |
|
|
|
print(results) |
|
return results |
|
|