File size: 7,011 Bytes
12efa10 c6b3925 d800998 12efa10 582e545 12efa10 d800998 f81f755 12efa10 f81f755 12efa10 d800998 f81f755 c6b3925 f81f755 12efa10 f81f755 12efa10 f81f755 12efa10 c6b3925 f81f755 12efa10 2fe1d39 c6e5f4b 261867e 12efa10 c6b3925 c6e5f4b c6b3925 12efa10 f81f755 12efa10 f81f755 12efa10 f81f755 12efa10 f81f755 12efa10 c6b3925 12efa10 f81f755 12efa10 261867e 3b20ce8 f81f755 582e545 3b20ce8 14eb45b 3b20ce8 14eb45b f81f755 e1bc568 a8b74be e1bc568 a8b74be 14eb45b 2fe1d39 a8b74be f81f755 14eb45b f81f755 3b20ce8 f81f755 3b20ce8 f81f755 14eb45b 3b20ce8 14eb45b f81f755 14eb45b 261867e 1bbf089 f81f755 1bbf089 12efa10 f81f755 12efa10 2fe1d39 12efa10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import json
import os
from datetime import datetime, timedelta, timezone
import gradio as gr
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
from huggingface_hub import hf_hub_download
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
progress=gr.Progress()
#base_model: str,
#revision: str,
#precision: str,
#weight_type: str,
#model_type: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
#precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
progress(0.1, desc=f"Checking model {model} on hub")
if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True): #revision=revision
return styled_error("Model does not exist on HF Hub. Please select a valid model name.")
##check for org banning
progress(0.2, desc=f"Checking for banned orgs")
banned_orgs = [{
'org_name':'TEMPLATE',
'banning_reason':'Submitting contaminated models'
}]
if user_name in [banned_org['org_name'] for banned_org in banned_orgs]:
return styled_error(
f"Your org \"{user_name}\" is banned from submitting models on ABL. If you think this is a mistake then please contact benchmark@silma.ai"
)
"""
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
"""
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model)#, revision=revision
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
progress(0.3, desc=f"Checking model size")
model_size = get_model_size(model_info=model_info)#, precision=precision
if model_size>15:
return styled_error("We currently accept community-submitted models up to 15 billion parameters only. If you represent an organization then please contact us at benchmark@silma.ai")
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
##check if org have submitted in the last 30 days
progress(0.6, desc=f"Checking last submission date")
previous_user_submissions = USERS_TO_SUBMISSION_DATES.get(user_name)
if False and previous_user_submissions:
previous_user_submission_dates = [datetime.strptime(date.replace("T"," ").split(" ")[0], "%Y-%m-%d") for date in previous_user_submissions]
previous_user_submission_dates.sort(reverse=True)
most_recent_submission = previous_user_submission_dates[0]
time_since_last_submission = datetime.now() - most_recent_submission
if time_since_last_submission < timedelta(days=30):
return styled_warning(
f"Your org \"{user_name}\" have already submitted a model in the last 30 days. Please wait before submitting another model. For exceptions please contact benchmark@silma.ai"
)
progress(0.8, desc=f"Checking same model submissions")
# Check for duplicate submission
if f"{model}" in REQUESTED_MODELS: #_{revision}_{precision}
return styled_warning("This model has been already submitted.")
# Seems good, creating the eval
print("Preparing a new eval")
eval_entry = {
"model": model,
"model_sha": model_info.sha,
#"base_model": base_model,
#"revision": revision,
#"precision": precision,
#"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
#"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
#"private": False,
}
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request.json" #_{precision}_{weight_type}
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
##update queue file
queue_file_path = "./eval_queue.json"
## download queue_file from repo using HuggingFace hub API, update it and upload again
queue_file = hf_hub_download(
filename=queue_file_path,
repo_id=QUEUE_REPO,
repo_type="space",
token=TOKEN
)
with open(queue_file, "r") as f:
queue_data = json.load(f)
queue_len = len(queue_data)
print(f"Queue length: {queue_len}")
if queue_len == 0:
queue_data = []
elif queue_len >= 1:
return styled_warning("The evaluation queue is full at the moment. Please try again in one hour")
queue_data.append(eval_entry)
print(queue_data)
#with open(queue_file, "w") as f:
# json.dump(queue_data, f)
print("Updating eval queue file")
API.upload_file(
path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"),
path_in_repo=queue_file_path,
repo_id=QUEUE_REPO,
repo_type="space",
commit_message=f"Add {model} to eval queue"
)
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path,
repo_id=QUEUE_REPO,
repo_type="space",
commit_message=f"Add {model} request file",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"✅ Good news! Your model has been added to the evaluation queue.<br>If you do not see the results after 3 hours then please let us know by opening a community discussion."
)
|