File size: 5,613 Bytes
12efa10 d800998 12efa10 582e545 12efa10 d800998 f81f755 12efa10 f81f755 12efa10 d800998 f81f755 12efa10 f81f755 12efa10 f81f755 12efa10 f81f755 12efa10 261867e 12efa10 f81f755 12efa10 f81f755 12efa10 f81f755 12efa10 f81f755 12efa10 d800998 12efa10 f81f755 12efa10 f81f755 12efa10 261867e 3b20ce8 f81f755 582e545 3b20ce8 14eb45b 3b20ce8 14eb45b f81f755 e1bc568 a8b74be e1bc568 a8b74be 14eb45b e1bc568 a8b74be f81f755 14eb45b f81f755 3b20ce8 f81f755 3b20ce8 f81f755 14eb45b 3b20ce8 14eb45b f81f755 14eb45b 261867e 1bbf089 f81f755 1bbf089 12efa10 f81f755 12efa10 42d6492 12efa10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import json
import os
from datetime import datetime, timezone
import gradio as gr
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
from huggingface_hub import hf_hub_download
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
progress=gr.Progress()
#base_model: str,
#revision: str,
#precision: str,
#weight_type: str,
#model_type: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
#precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
progress(0.1, desc=f"Checking model {model} on hub")
if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True): #revision=revision
return styled_error("Model does not exist on HF Hub. Please select a valid model name.")
"""
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
"""
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model)#, revision=revision
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info)#, precision=precision
if model_size>30:
return styled_error("Due to limited GPU availability, evaluations for models larger than 30B are currently not automated. Please open a ticket here so we do it manually for you. https://huggingface.co/spaces/silma-ai/Arabic-Broad-Leaderboard/discussions")
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Preparing a new eval")
eval_entry = {
"model": model,
"model_sha": model_info.sha,
#"base_model": base_model,
#"revision": revision,
#"precision": precision,
#"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
#"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
#"private": False,
}
progress(0.5, desc=f"Checking previous submissions")
# Check for duplicate submission
if f"{model}" in REQUESTED_MODELS: #_{revision}_{precision}
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request.json" #_{precision}_{weight_type}
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
##update queue file
queue_file_path = "./eval_queue.json"
## download queue_file from repo using HuggingFace hub API, update it and upload again
queue_file = hf_hub_download(
filename=queue_file_path,
repo_id=QUEUE_REPO,
repo_type="space",
token=TOKEN
)
with open(queue_file, "r") as f:
queue_data = json.load(f)
queue_len = len(queue_data)
print(f"Queue length: {queue_len}")
if queue_len == 0:
queue_data = []
elif queue_len >= 2:
return styled_warning("The evaluation queue is full at the moment. Please try again in one hour")
queue_data.append(eval_entry)
print(queue_data)
#with open(queue_file, "w") as f:
# json.dump(queue_data, f)
print("Updating eval queue file")
API.upload_file(
path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"),
path_in_repo=queue_file_path,
repo_id=QUEUE_REPO,
repo_type="space",
commit_message=f"Add {model} to eval queue"
)
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path,
repo_id=QUEUE_REPO,
repo_type="space",
commit_message=f"Add {model} request file",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Thank you for submitting your request! It has been placed in the evaluation queue. You can except the eval to be completed in 1 hour."
)
|