File size: 13,868 Bytes
5ba0490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import glob
import os
import random

import gradio as gr
import numpy as np
import torch
import torch.utils.checkpoint
from PIL import Image
from diffusers import (
    AutoencoderKL,
    UNet2DConditionModel,
    UniPCMultistepScheduler,
)
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel
from torchvision.transforms import transforms
from transformers import AutoTokenizer, PretrainedConfig

from face_parsing import inference as face_parsing_inference

# ----------------------------------------------------------------

# Define model paths and other parameters

# sd 1.5
# pretrained_model_name_or_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
# controlnet_path = "siijiawei/gorgeous-mafor-sd1-5"

# sd 2.1
pretrained_model_name_or_path = "stabilityai/stable-diffusion-2-1-base"
controlnet_path = "siijiawei/gorgeous-mafor-sd2-1"

image_sets = sorted(glob.glob("makeup_assets/*"))
textual_inversion_paths = sorted(glob.glob("makeup_assets/*"))

prompt_template = "A woman with {} makeup on face"
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32


# ----------------------------------------------------------------


def import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path: str, revision: str
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
            RobertaSeriesModelWithTransformation,
        )

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")


# ----------------------------------------------------------------

# Initialize components
tokenizer = AutoTokenizer.from_pretrained(
    pretrained_model_name_or_path,
    subfolder="tokenizer",
    use_fast=False,
)
text_encoder_cls = import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path, "main"
)
text_encoder = text_encoder_cls.from_pretrained(
    pretrained_model_name_or_path, subfolder="text_encoder"
)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(
    pretrained_model_name_or_path, subfolder="unet"
)
controlnet = ControlNetModel.from_pretrained(
    controlnet_path,
    use_safetensors=True,
    torch_dtype=torch.float16,
    # subfolder="controlnet",
).to(device)

vae.to(device, dtype=dtype)
unet.to(device, dtype=dtype)
text_encoder.to(device, dtype=dtype)
controlnet.to(device, dtype=dtype)

pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
    pretrained_model_name_or_path,
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=dtype,
    use_safetensors=True,
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline.to(device)

textual_inversion_tokens = [f"<v{i}>" for i in range(len(textual_inversion_paths))]
pipeline.load_textual_inversion(textual_inversion_paths, token=textual_inversion_tokens)

generator = torch.Generator(device=device).manual_seed(42)

preprocess_transform = transforms.Compose(
    [transforms.Resize(512), transforms.CenterCrop(512)]
)


# ----------------------------------------------------------------


# Helper functions
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def make_inpaint_condition(image, image_mask):
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
    assert image.shape[0:1] == image_mask.shape[0:1]
    image[image_mask > 0.5] = -1.0  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image


# ----------------------------------------------------------------


def create_image(
    idea_set_target,
    input_image,
    prompt,
    n_prompt,
    control_scale,
    guidance_scale,
    num_inference_steps,
    seed,
):
    if input_image is not None:
        # Generate mask
        input_image_path = "input_image.png"
        input_image.save(input_image_path)

        input_image = preprocess_transform(input_image)
        mask_image = face_parsing_inference.get_face_mask(input_image).convert("L")

        print("idea_set_target", idea_set_target)

        set_index = int(idea_set_target.split(":")[0].replace("Set ", "")) - 1  # start from 1

        # Prepare prompt
        token = textual_inversion_tokens[set_index]
        prompt = prompt.replace("{}", token)
        print(prompt)

        # Generate image
        blurred_mask = pipeline.mask_processor.blur(mask_image, blur_factor=10)
        masked_image = make_inpaint_condition(input_image, blurred_mask)

        generator = torch.Generator(device=device).manual_seed(seed)
        with torch.autocast("cuda"):
            output = pipeline(
                prompt=prompt,
                image=input_image,
                mask_image=blurred_mask,
                control_image=input_image,
                num_inference_steps=int(num_inference_steps),
                generator=generator,
                negative_prompt=n_prompt,
                controlnet_conditioning_scale=float(control_scale),
                guidance_scale=float(guidance_scale),
            )

        output_image = output.images[0]
        return output_image
    return None


# ----------------------------------------------------------------


def read_image_from_dirpath(dirpath):
    img_paths = sorted(
        glob.glob(dirpath + "/*.png")
        + glob.glob(dirpath + "/*.jpeg")
        + glob.glob(dirpath + "/*.jpg")
    )
    imgs = [Image.open(p) for p in img_paths[:5]]

    if len(imgs) < 5:
        imgs += [Image.new(mode="RGB", size=(200, 200)) for _ in range(5 - len(imgs))]

    return imgs




image_sets = [
    {
        "label": f"Set {i + 1}: {os.path.basename(image_sets[i])}",
        "images": read_image_from_dirpath(image_sets[i]),
    }
    for i in range(len(image_sets))
]

labels = [image_set["label"] for image_set in image_sets]

def display_images(set_label):
    print("?")
    set_index = int(set_label.split(":")[0].replace("Set ", "")) - 1  # start from 1
    image_set = image_sets[set_index]
    return [image_set["label"]] + image_set["images"]


# ----------------------------------------------------------------

# Gradio UI setup
block = gr.Blocks(
    css="""
        footer {visibility: hidden}
        .title-background {
            background-color: #f7e4da; /* Light brown background */
            color: #1d1d1d; /* Dark text color */
            padding: 20px; /* Padding for top and bottom */
            text-align: center;
            width: 100%; /* Set width to 100% */
            margin: 0 auto; /* Center alignment */
            max-width: 1200px; /* Max width to keep content centered */
            box-sizing: border-box; /* Ensure padding is inside the box model */
        }
        .gr-button {
            background-color: #c2410c !important; /* Brown color for buttons */
            color: white !important; /* Text color */
        }
        .gr-dropdown, .gr-slider, .gr-textbox {
            border-color: #c2410c !important; /* Brown color for borders */
        }
        .gr-label, .gr-markdown {
            color: #c2410c !important; /* Brown color for text */
        }
        .content-description {
            text-align: center;
            max-width: 1200px; /* Ensure same max width as title */
            margin: 0 auto; /* Center alignment */
            box-sizing: border-box;
        }
    """
).queue(max_size=10, api_open=False)

with block:
    # Title with background
    gr.Markdown(
        """
        <div class="title-background">
            <h1 style='font-weight: 10px; font-size: 40px;'>&#128132;<b>Gorgeous</b>: Creating Narrative-Driven Makeup Ideas via Image Prompt &#128161;</h1>
        </div>
        """
    )
    # Description with center alignment
    gr.Markdown(
        """
        <div class="content-description">Introducing \( \textbf{Gorgeous} \), a diffusion-based generative method that revolutionizes
                    the makeup industry by empowering user creativity via image prompts. Unlike
                    traditional makeup transfer methods that focus on replicating existing make-
                    ups, Gorgeous, for the first time, empowers users to integrate narrative elements
                    into makeup ideation using image prompts. The result is a makeup concept
                    that vividly reflects user’s expression via images, offering imaginative makeup
                    ideas for physical makeup applications. To achieve this, Gorgeous establishes a
                    foundational framework, ensuring the model learns “what makeup is” before inte-
                    grating narrative elements. A pseudo-pairing strategy, utilizing a face parsing and
                    content-style disentangling network, addresses unpaired data challenges, enabling
                    the model to do makeup training on bare faces. Users can input images repre-
                    senting their ideas (e.g., fire), from which Gorgeous extracts context embeddings
                    to guide our proposed makeup inpainting algorithm, conceptualizing creative,
                    narrative-driven makeup ideas for targeted facial regions. Comprehensive exper-
                    iments underscore the effectiveness of Gorgeous, paving a way for a
                    new dimension in digital makeup artistry and application!</div>
        """
    )

    with gr.Tabs():
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    image_pil = gr.Image(
                        label="Targeted face (e.g., your face)", type="pil", height=256
                    )
                    generated_image = gr.Image(
                        label="Generated Image", type="pil", height=256
                    )

                with gr.Row():
                    set_dropdown = gr.Dropdown(
                        choices=[
                            labels[i]
                            for i in range(len(image_sets))
                        ],
                        label="Select Image Set",
                        value=labels[0],
                    )
                    image_label = gr.Label()
                    image_boxes = [gr.Image() for _ in range(5)]

                    set_dropdown.change(
                        display_images,
                        set_dropdown,
                        outputs=[image_label] + image_boxes,
                    )

                with gr.Row():
                    scale = gr.Slider(
                        minimum=0,
                        maximum=30,
                        step=0.01,
                        value=20.0,
                        label="Guidance scale (Adjust the slider to steer the influence of the idea chosen on the generation.)",
                    )
                    control_scale = gr.Slider(
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=1,
                        label="Control scale (Adjust the slider to control face fidelity.)",
                    )
                    num_inference_steps = gr.Slider(
                        minimum=20,
                        maximum=100,
                        step=1,
                        value=50,
                        label="Number of inference steps",
                    )

                # prompt_template = "A woman with {} makeup on face"

                with gr.Row():
                    prompt = gr.Textbox(
                        label='Prompt (the set is represented by "{}")',
                        value="A photo of a woman with {} on face",
                    )

                with gr.Row():
                    n_prompt = gr.Textbox(
                        label="Negative Prompt",
                        value="worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
                    )

                with gr.Row():
                    seed = gr.Slider(
                        minimum=0, maximum=MAX_SEED, value=1, step=1, label="Seed Value"
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                generate_button = gr.Button("Generate Image")

        generate_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=create_image,
            inputs=[
                set_dropdown,
                image_pil,
                prompt,
                n_prompt,
                control_scale,
                scale,
                num_inference_steps,
                seed,
            ],
            outputs=generated_image,
        )

    gr.Markdown("### Article")


block.launch(debug=True)