File size: 5,470 Bytes
85027aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import re
from polyglot.detect import Detector

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca"
RELATIVE_MODEL="LLaMAX/LLaMAX3-8B"

TITLE = "<h1><center>LLaMAX3-Translator</center></h1>"


model = AutoModelForCausalLM.from_pretrained(
        MODEL,
        torch_dtype=torch.float16,
        device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL)


def lang_detector(text):
    min_chars = 5
    if len(text) < min_chars:
        return "Input text too short"
    try:
        detector = Detector(text).language
        lang_info = str(detector)
        code = re.search(r"name: (\w+)", lang_info).group(1)
        return code
    except Exception as e:
        return f"ERROR:{str(e)}"

def Prompt_template(inst, prompt, query, src_language, trg_language):
    inst = inst.format(src_language=src_language, trg_language=trg_language)
    instruction = f"`{inst}`"
    prompt = (
        f'{prompt}'
        f'### Instruction:\n{instruction}\n'
        f'### Input:\n{query}\n### Response:'
    )
    return prompt

# Unfinished
def chunk_text():
    pass
    
@spaces.GPU(duration=60)
def translate(
    source_text: str, 
    source_lang: str,
    target_lang: str,
    inst: str, 
    prompt: str, 
    max_length: int,
    temperature: float,
    top_p: float,
    rp: float):
    
    print(f'Text is - {source_text}')
    
    prompt = Prompt_template(inst, prompt, source_text, source_lang, target_lang)
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
        
    generate_kwargs = dict(
        input_ids=input_ids,
        max_length=max_length, 
        do_sample=True, 
        temperature=temperature,
        top_p=top_p,
        repetition_penalty=rp,    
    )

    outputs = model.generate(**generate_kwargs)
    
    resp = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
    
    yield resp[len(prompt):]

CSS = """
    h1 {
        text-align: center;
        display: block;
        height: 10vh;
        align-content: center;
    }
    footer {
        visibility: hidden;
    }
"""

LICENSE = """
Model: <a href="https://huggingface.co/LLaMAX/LLaMAX3-8B-Alpaca">LLaMAX3-8B-Alpaca</a>
"""

LANG_LIST = [
    'Assamese', 'Bengali', 'Gujarati', 'Hindi', 'Kannada', 'Kashmiri', 'Konkani',
    'Malayalam', 'Manipuri', 'Marathi', 'Nepali', 'Oriya', 'Punjabi',
    'Sanskrit', 'Sindhi', 'Tamil', 'Telugu', 'Urdu', 'English'
]


chatbot = gr.Chatbot(height=600)

with gr.Blocks(theme="soft", css=CSS) as demo:
    gr.Markdown(TITLE)
    with gr.Row():
        with gr.Column(scale=1):
            source_lang = gr.Textbox(
                label="Source Lang(Auto-Detect)",
                value="English",
            )
            target_lang = gr.Dropdown(
                label="Target Lang",
                value="Spanish",
                choices=LANG_LIST,
            )
            max_length = gr.Slider(
                label="Max Length",
                minimum=512,
                maximum=8192,
                value=4096,
                step=8,
            )
            temperature = gr.Slider(
                label="Temperature",
                minimum=0,
                maximum=1,
                value=0.3,
                step=0.1,
            )
            top_p = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
            )
            rp = gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
            )
            with gr.Accordion("Advanced Options", open=False):
                inst = gr.Textbox(
                    label="Instruction",
                    value="Translate the following sentences from {src_language} to {trg_language}.",
                    lines=3,
                )
                prompt = gr.Textbox(
                    label="Prompt",
                    value=""" 'Below is an instruction that describes a task, paired with an input that provides further context. '
                    'Write a response that appropriately completes the request.\n' """,
                    lines=8,
                )
                
        with gr.Column(scale=4):
            source_text = gr.Textbox(
                label="Source Text",
                value="LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. "+\
                "LLaMAX supports translation between more than 100 languages, "+\
                "surpassing the performance of similarly scaled LLMs.",
                lines=10,
            )
            output_text = gr.Textbox(
                label="Output Text",
                lines=10,
                show_copy_button=True,
            )
    with gr.Row():
        submit = gr.Button(value="Submit")
        clear = gr.ClearButton([source_text, output_text])
    gr.Markdown(LICENSE)
    
    source_text.change(lang_detector, source_text, source_lang)
    submit.click(fn=translate, inputs=[source_text, source_lang, target_lang, inst, prompt, max_length, temperature, top_p, rp], outputs=[output_text])


if __name__ == "__main__":
    demo.launch()