|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from itertools import permutations |
|
from typing import Any, Optional, Sequence |
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
|
|
from pytorch_lightning.utilities.types import STEP_OUTPUT |
|
|
|
from IndicPhotoOCR.utils.strhub.models.base import CrossEntropySystem |
|
|
|
from .model import PARSeq as Model |
|
|
|
|
|
class PARSeq(CrossEntropySystem): |
|
|
|
def __init__( |
|
self, |
|
charset_train: str, |
|
charset_test: str, |
|
max_label_length: int, |
|
batch_size: int, |
|
lr: float, |
|
warmup_pct: float, |
|
weight_decay: float, |
|
img_size: Sequence[int], |
|
patch_size: Sequence[int], |
|
embed_dim: int, |
|
enc_num_heads: int, |
|
enc_mlp_ratio: int, |
|
enc_depth: int, |
|
dec_num_heads: int, |
|
dec_mlp_ratio: int, |
|
dec_depth: int, |
|
perm_num: int, |
|
perm_forward: bool, |
|
perm_mirrored: bool, |
|
decode_ar: bool, |
|
refine_iters: int, |
|
dropout: float, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__(charset_train, charset_test, batch_size, lr, warmup_pct, weight_decay) |
|
self.save_hyperparameters() |
|
|
|
self.model = Model( |
|
len(self.tokenizer), |
|
max_label_length, |
|
img_size, |
|
patch_size, |
|
embed_dim, |
|
enc_num_heads, |
|
enc_mlp_ratio, |
|
enc_depth, |
|
dec_num_heads, |
|
dec_mlp_ratio, |
|
dec_depth, |
|
decode_ar, |
|
refine_iters, |
|
dropout, |
|
) |
|
|
|
|
|
self.rng = np.random.default_rng() |
|
self.max_gen_perms = perm_num // 2 if perm_mirrored else perm_num |
|
self.perm_forward = perm_forward |
|
self.perm_mirrored = perm_mirrored |
|
|
|
def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor: |
|
return self.model.forward(self.tokenizer, images, max_length) |
|
|
|
def gen_tgt_perms(self, tgt): |
|
"""Generate shared permutations for the whole batch. |
|
This works because the same attention mask can be used for the shorter sequences |
|
because of the padding mask. |
|
""" |
|
|
|
max_num_chars = tgt.shape[1] - 2 |
|
|
|
if max_num_chars == 1: |
|
return torch.arange(3, device=self._device).unsqueeze(0) |
|
perms = [torch.arange(max_num_chars, device=self._device)] if self.perm_forward else [] |
|
|
|
max_perms = math.factorial(max_num_chars) |
|
if self.perm_mirrored: |
|
max_perms //= 2 |
|
num_gen_perms = min(self.max_gen_perms, max_perms) |
|
|
|
|
|
if max_num_chars < 5: |
|
|
|
|
|
if max_num_chars == 4 and self.perm_mirrored: |
|
selector = [0, 3, 4, 6, 9, 10, 12, 16, 17, 18, 19, 21] |
|
else: |
|
selector = list(range(max_perms)) |
|
perm_pool = torch.as_tensor( |
|
list(permutations(range(max_num_chars), max_num_chars)), |
|
device=self._device, |
|
)[selector] |
|
|
|
if self.perm_forward: |
|
perm_pool = perm_pool[1:] |
|
perms = torch.stack(perms) |
|
if len(perm_pool): |
|
i = self.rng.choice(len(perm_pool), size=num_gen_perms - len(perms), replace=False) |
|
perms = torch.cat([perms, perm_pool[i]]) |
|
else: |
|
perms.extend( |
|
[torch.randperm(max_num_chars, device=self._device) for _ in range(num_gen_perms - len(perms))] |
|
) |
|
perms = torch.stack(perms) |
|
if self.perm_mirrored: |
|
|
|
comp = perms.flip(-1) |
|
|
|
perms = torch.stack([perms, comp]).transpose(0, 1).reshape(-1, max_num_chars) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bos_idx = perms.new_zeros((len(perms), 1)) |
|
eos_idx = perms.new_full((len(perms), 1), max_num_chars + 1) |
|
perms = torch.cat([bos_idx, perms + 1, eos_idx], dim=1) |
|
|
|
|
|
|
|
if len(perms) > 1: |
|
perms[1, 1:] = max_num_chars + 1 - torch.arange(max_num_chars + 1, device=self._device) |
|
return perms |
|
|
|
def generate_attn_masks(self, perm): |
|
"""Generate attention masks given a sequence permutation (includes pos. for bos and eos tokens) |
|
:param perm: the permutation sequence. i = 0 is always the BOS |
|
:return: lookahead attention masks |
|
""" |
|
sz = perm.shape[0] |
|
mask = torch.zeros((sz, sz), dtype=torch.bool, device=self._device) |
|
for i in range(sz): |
|
query_idx = perm[i] |
|
masked_keys = perm[i + 1 :] |
|
mask[query_idx, masked_keys] = True |
|
content_mask = mask[:-1, :-1].clone() |
|
mask[torch.eye(sz, dtype=torch.bool, device=self._device)] = True |
|
query_mask = mask[1:, :-1] |
|
return content_mask, query_mask |
|
|
|
def training_step(self, batch, batch_idx) -> STEP_OUTPUT: |
|
images, labels = batch |
|
tgt = self.tokenizer.encode(labels, self._device) |
|
|
|
|
|
memory = self.model.encode(images) |
|
|
|
|
|
tgt_perms = self.gen_tgt_perms(tgt) |
|
tgt_in = tgt[:, :-1] |
|
tgt_out = tgt[:, 1:] |
|
|
|
tgt_padding_mask = (tgt_in == self.pad_id) | (tgt_in == self.eos_id) |
|
|
|
loss = 0 |
|
loss_numel = 0 |
|
n = (tgt_out != self.pad_id).sum().item() |
|
for i, perm in enumerate(tgt_perms): |
|
tgt_mask, query_mask = self.generate_attn_masks(perm) |
|
out = self.model.decode(tgt_in, memory, tgt_mask, tgt_padding_mask, tgt_query_mask=query_mask) |
|
logits = self.model.head(out).flatten(end_dim=1) |
|
loss += n * F.cross_entropy(logits, tgt_out.flatten(), ignore_index=self.pad_id) |
|
loss_numel += n |
|
|
|
|
|
if i == 1: |
|
tgt_out = torch.where(tgt_out == self.eos_id, self.pad_id, tgt_out) |
|
n = (tgt_out != self.pad_id).sum().item() |
|
loss /= loss_numel |
|
|
|
self.log('loss', loss) |
|
return loss |
|
|