Spaces:
Runtime error
Runtime error
import gradio as gr | |
import nltk | |
from PIL import Image | |
import os | |
from IndicPhotoOCR.ocr import OCR # Ensure OCR class is saved in a file named ocr.py | |
from IndicPhotoOCR.theme import Seafoam | |
import numpy as np | |
import torch | |
from transformers import ( | |
AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
) | |
from IndicTransToolkit import IndicProcessor | |
model_name = "ai4bharat/indictrans2-indic-en-1B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True) | |
ip = IndicProcessor(inference=True) | |
import torch | |
DEVICE = "cpu" | |
# Initialize the OCR object for text detection and recognition | |
ocr = OCR(device="cpu", verbose=False) | |
def translate_en_hin(given_str): | |
def detect_para(bbox_dict): | |
alpha1 = 0.2 | |
alpha2 = 0.7 | |
beta1 = 0.4 | |
data = bbox_dict | |
word_crops = list(data.keys()) | |
for i in word_crops: | |
data[i]["x1"], data[i]["y1"], data[i]["x2"], data[i]["y2"] = data[i]["bbox"] | |
data[i]["xc"] = (data[i]["x1"] + data[i]["x2"]) / 2 | |
data[i]["yc"] = (data[i]["y1"] + data[i]["y2"]) / 2 | |
data[i]["w"] = data[i]["x2"] - data[i]["x1"] | |
data[i]["h"] = data[i]["y2"] - data[i]["y1"] | |
patch_info = {} | |
while word_crops: | |
img_name = word_crops[0].split("_")[0] | |
word_crop_collection = [ | |
word_crop for word_crop in word_crops if word_crop.startswith(img_name) | |
] | |
centroids = {} | |
lines = [] | |
img_word_crops = word_crop_collection.copy() | |
para = [] | |
while img_word_crops: | |
clusters = [] | |
para_words_group = [ | |
img_word_crops[0], | |
] | |
added = [ | |
img_word_crops[0], | |
] | |
img_word_crops.remove(img_word_crops[0]) | |
## determining the paragraph | |
while added: | |
word_crop = added.pop() | |
for i in range(len(img_word_crops)): | |
word_crop_ = img_word_crops[i] | |
if ( | |
abs(data[word_crop_]["yc"] - data[word_crop]["yc"]) | |
< data[word_crop]["h"] * alpha1 | |
): | |
if data[word_crop]["xc"] > data[word_crop_]["xc"]: | |
if (data[word_crop]["x1"] - data[word_crop_]["x2"]) < data[ | |
word_crop | |
]["h"] * alpha2: | |
para_words_group.append(word_crop_) | |
added.append(word_crop_) | |
else: | |
if (data[word_crop_]["x1"] - data[word_crop]["x2"]) < data[ | |
word_crop | |
]["h"] * alpha2: | |
para_words_group.append(word_crop_) | |
added.append(word_crop_) | |
else: | |
if data[word_crop]["yc"] > data[word_crop_]["yc"]: | |
if (data[word_crop]["y1"] - data[word_crop_]["y2"]) < data[ | |
word_crop | |
]["h"] * beta1 and ( | |
( | |
(data[word_crop_]["x1"] < data[word_crop]["x2"]) | |
and (data[word_crop_]["x1"] > data[word_crop]["x1"]) | |
) | |
or ( | |
(data[word_crop_]["x2"] < data[word_crop]["x2"]) | |
and (data[word_crop_]["x2"] > data[word_crop]["x1"]) | |
) | |
or ( | |
(data[word_crop]["x1"] > data[word_crop_]["x1"]) | |
and (data[word_crop]["x2"] < data[word_crop_]["x2"]) | |
) | |
): | |
para_words_group.append(word_crop_) | |
added.append(word_crop_) | |
else: | |
if (data[word_crop_]["y1"] - data[word_crop]["y2"]) < data[ | |
word_crop | |
]["h"] * beta1 and ( | |
( | |
(data[word_crop_]["x1"] < data[word_crop]["x2"]) | |
and (data[word_crop_]["x1"] > data[word_crop]["x1"]) | |
) | |
or ( | |
(data[word_crop_]["x2"] < data[word_crop]["x2"]) | |
and (data[word_crop_]["x2"] > data[word_crop]["x1"]) | |
) | |
or ( | |
(data[word_crop]["x1"] > data[word_crop_]["x1"]) | |
and (data[word_crop]["x2"] < data[word_crop_]["x2"]) | |
) | |
): | |
para_words_group.append(word_crop_) | |
added.append(word_crop_) | |
img_word_crops = [p for p in img_word_crops if p not in para_words_group] | |
## processing for the line | |
while para_words_group: | |
line_words_group = [ | |
para_words_group[0], | |
] | |
added = [ | |
para_words_group[0], | |
] | |
para_words_group.remove(para_words_group[0]) | |
## determining the line | |
while added: | |
word_crop = added.pop() | |
for i in range(len(para_words_group)): | |
word_crop_ = para_words_group[i] | |
if ( | |
abs(data[word_crop_]["yc"] - data[word_crop]["yc"]) | |
< data[word_crop]["h"] * alpha1 | |
): | |
if data[word_crop]["xc"] > data[word_crop_]["xc"]: | |
if (data[word_crop]["x1"] - data[word_crop_]["x2"]) < data[ | |
word_crop | |
]["h"] * alpha2: | |
line_words_group.append(word_crop_) | |
added.append(word_crop_) | |
else: | |
if (data[word_crop_]["x1"] - data[word_crop]["x2"]) < data[ | |
word_crop | |
]["h"] * alpha2: | |
line_words_group.append(word_crop_) | |
added.append(word_crop_) | |
para_words_group = [ | |
p for p in para_words_group if p not in line_words_group | |
] | |
xc = [data[word_crop]["xc"] for word_crop in line_words_group] | |
idxs = np.argsort(xc) | |
patch_cluster_ = [line_words_group[i] for i in idxs] | |
line_words_group = patch_cluster_ | |
x1 = [data[word_crop]["x1"] for word_crop in line_words_group] | |
x2 = [data[word_crop]["x2"] for word_crop in line_words_group] | |
y1 = [data[word_crop]["y1"] for word_crop in line_words_group] | |
y2 = [data[word_crop]["y2"] for word_crop in line_words_group] | |
txt_line = [data[word_crop]["txt"] for word_crop in line_words_group] | |
txt = " ".join(txt_line) | |
x = [x1[0]] | |
y1_ = [y1[0]] | |
y2_ = [y2[0]] | |
l = [len(txt_l) for txt_l in txt_line] | |
for i in range(1, len(x1)): | |
x.append((x1[i] + x2[i - 1]) / 2) | |
y1_.append((y1[i] + y1[i - 1]) / 2) | |
y2_.append((y2[i] + y2[i - 1]) / 2) | |
x.append(x2[-1]) | |
y1_.append(y1[-1]) | |
y2_.append(y2[-1]) | |
line_info = { | |
"x": x, | |
"y1": y1_, | |
"y2": y2_, | |
"l": l, | |
"txt": txt, | |
"word_crops": line_words_group, | |
} | |
clusters.append(line_info) | |
y_ = [clusters[i]["y1"][0] for i in range(len(clusters))] | |
idxs = np.argsort(y_) | |
clusters_ = [clusters[i] for i in idxs] | |
txt = [clusters[i]["txt"] for i in idxs] | |
l = [len(t) for t in txt] | |
txt = " ".join(txt) | |
para_info = {"lines": clusters_, "l": l, "txt": txt} | |
para.append(para_info) | |
for word_crop in word_crop_collection: | |
word_crops.remove(word_crop) | |
return "\n".join([para[i]["txt"] for i in range(len(para))]) | |
def process_image(image): | |
""" | |
Processes the uploaded image for text detection and recognition. | |
- Detects bounding boxes in the image | |
- Draws bounding boxes on the image and identifies script in each detected area | |
- Recognizes text in each cropped region and returns the annotated image and recognized text | |
Parameters: | |
image (PIL.Image): The input image to be processed. | |
Returns: | |
tuple: A PIL.Image with bounding boxes and a string of recognized text. | |
""" | |
# Save the input image temporarily | |
image_path = "input_image.jpg" | |
image.save(image_path) | |
# Detect bounding boxes on the image using OCR | |
detections = ocr.detect(image_path) | |
# Draw bounding boxes on the image and save it as output | |
ocr.visualize_detection(image_path, detections, save_path="output_image.png") | |
# Load the annotated image with bounding boxes drawn | |
output_image = Image.open("output_image.png") | |
# Initialize list to hold recognized text from each detected area | |
recognized_texts = {} | |
pil_image = Image.open(image_path) | |
# Process each detected bounding box for script identification and text recognition | |
for id,bbox in enumerate(detections): | |
# Identify the script and crop the image to this region | |
script_lang, cropped_path ="english" | |
if script_lang: # Only proceed if a script language is identified | |
# Recognize text in the cropped area | |
recognized_text = ocr.recognise(cropped_path, "english") | |
x1 = min([bbox[i][0] for i in range(len(bbox))]) | |
y1 = min([bbox[i][1] for i in range(len(bbox))]) | |
x2 = max([bbox[i][0] for i in range(len(bbox))]) | |
y2 = max([bbox[i][1] for i in range(len(bbox))]) | |
recognized_texts[f"img_{id}"] = {"txt":recognized_text,"bbox":[x1,y1,x2,y2]} | |
# Combine recognized texts into a single string for display | |
return output_image, translate_en_hin(detect_para(recognized_texts)) | |
# Custom HTML for interface header with logos and alignment | |
interface_html = """ | |
<div style="text-align: left; padding: 10px;"> | |
<div style="background-color: white; padding: 10px; display: inline-block;"> | |
<img src="https://iitj.ac.in/images/logo/Design-of-New-Logo-of-IITJ-2.png" alt="IITJ Logo" style="width: 100px; height: 100px;"> | |
</div> | |
<img src="https://play-lh.googleusercontent.com/_FXSr4xmhPfBykmNJvKvC0GIAVJmOLhFl6RA5fobCjV-8zVSypxX8yb8ka6zu6-4TEft=w240-h480-rw" alt="Bhashini Logo" style="width: 100px; height: 100px; float: right;"> | |
</div> | |
""" | |
# Links to GitHub and Dataset repositories with GitHub icon | |
links_html = """ | |
<div style="text-align: center; padding-top: 20px;"> | |
<a href="https://github.com/Bhashini-IITJ/IndicPhotoOCR" target="_blank" style="margin-right: 20px; font-size: 18px; text-decoration: none;"> | |
GitHub Repository | |
</a> | |
<a href="https://github.com/Bhashini-IITJ/BharatSceneTextDataset" target="_blank" style="font-size: 18px; text-decoration: none;"> | |
Dataset Repository | |
</a> | |
</div> | |
""" | |
# Custom CSS to style the text box font size | |
custom_css = """ | |
.custom-textbox textarea { | |
font-size: 20px !important; | |
} | |
""" | |
# Create an instance of the Seafoam theme for a consistent visual style | |
seafoam = Seafoam() | |
# Define examples for users to try out | |
examples = [ | |
["test_images/image_141.jpg"], | |
["test_images/image_1164.jpg"] | |
] | |
title = "<h1 style='text-align: center;'>Developed by IITJ</h1>" | |
# Set up the Gradio Interface with the defined function and customizations | |
demo = gr.Interface( | |
allow_flagging="never", | |
fn=process_image, | |
inputs=gr.Image(type="pil", image_mode="RGB"), | |
outputs=[ | |
gr.Image(type="pil", label="Detected Bounding Boxes"), | |
gr.Textbox(label="Translated Text", elem_classes="custom-textbox") | |
], | |
title="IndicPhotoOCR - Indic Scene Text Recogniser Toolkit", | |
description=title+interface_html+links_html, | |
theme=seafoam, | |
css=custom_css, | |
examples=examples | |
) | |
# Server setup and launch configuration | |
if __name__ == "__main__": | |
server = "0.0.0.0" # IP address for server | |
port = 7865 # Port to run the server on | |
demo.launch(server_name=server, server_port=port) | |
# demo.launch(share = True) | |