Indic_Transliteration / utils_xlit.py
shethjenil's picture
Upload 9 files
7d68ade verified
from ast import literal_eval as ast_literal_eval
from time import time as get_time
from math import log as math_log
from re import compile as re_compile,sub as re_sub
from json import load as json_load
from argparse import Namespace
from collections import namedtuple
from urduhack import normalize as shahmukhi_normalize
from indicnlp.normalize.indic_normalize import IndicNormalizerFactory
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.token_generation_constraints import pack_constraints, unpack_constraints
from fairseq_cli.generate import get_symbols_to_strip_from_output
RTL_LANG_CODES = {
'ks',
'pnb',
'sd',
'skr',
'ur',
'dv'
}
LANG_CODE_TO_SCRIPT_CODE = {
"as" : "Beng",
"bn" : "Beng",
"doi" : "Deva",
"dv" : "Thaa",
"gom" : "Deva",
"gu" : "Gujr",
"hi" : "Deva",
"ks" : "Aran",
"mai" : "Deva",
"mr" : "Deva",
"ne" : "Deva",
"or" : "Orya",
"pa" : "Guru",
"pnb" : "Aran",
"sa" : "Deva",
"sd" : "Arab",
"si" : "Sinh",
"skr" : "Aran",
"ur" : "Aran",
"kn" : "Knda",
"ml" : "Mlym",
"ta" : "Taml",
"te" : "Telu",
"brx" : "Deva",
"mni" : "Mtei",
"sat" : "Olck",
"en" : "Latn",
}
SCRIPT_CODE_TO_UNICODE_CHARS_RANGE_STR = {
"Beng": "\u0980-\u09FF",
"Deva": "\u0900-\u097F",
"Gujr": "\u0A80-\u0AFF",
"Guru": "\u0A00-\u0A7F",
"Orya": "\u0B00-\u0B7F",
"Knda": "\u0C80-\u0CFF",
"Mlym": "\u0D00-\u0D7F",
"Sinh": "\u0D80-\u0DFF",
"Taml": "\u0B80-\u0BFF",
"Telu": "\u0C00-\u0C7F",
"Mtei": "\uABC0-\uABFF",
"Arab": "\u0600-\u06FF\u0750-\u077F\u0870-\u089F\u08A0-\u08FF",
"Aran": "\u0600-\u06FF\u0750-\u077F\u0870-\u089F\u08A0-\u08FF",
"Latn": "\u0041-\u005A\u0061-\u007A",
"Olck": "\u1C50-\u1C7F",
"Thaa": "\u0780-\u07BF",
}
INDIC_TO_LATIN_PUNCT = {
'।': '.',
'॥': "..",
'෴': '.',
'꫰': ',',
'꯫': '.',
'᱾': '.',
'᱿': '..',
'۔': '.',
'؟': '?',
'،': ',',
'؛': ';',
'۝': "..",
}
INDIC_TO_LATIN_PUNCT_TRANSLATOR = str.maketrans(INDIC_TO_LATIN_PUNCT)
NON_LATIN_FULLSTOP_LANGS = {
'as' : '।',
'bn' : '।',
'brx': '।',
'doi': '।',
'hi' : '।',
'mai': '।',
'mni': '꯫',
'ne' : '।',
'or' : '।',
'pa' : '।',
'sa' : '।',
'sat': '᱾',
'ks' : '۔',
'pnb': '۔',
'skr': '۔',
'ur' : '۔',
}
ENDS_WITH_LATIN_FULLSTOP_REGEX = re_compile("(^|.*[^.])\.$")
def nativize_latin_fullstop(text, lang_code):
if lang_code in NON_LATIN_FULLSTOP_LANGS and ENDS_WITH_LATIN_FULLSTOP_REGEX.match(text):
return text[:-1] + NON_LATIN_FULLSTOP_LANGS[lang_code]
return text
LATIN_TO_PERSOARABIC_PUNCTUATIONS = {
'?': '؟',
',': '،',
';': '؛',
}
LATIN_TO_PERSOARABIC_PUNC_TRANSLATOR = str.maketrans(LATIN_TO_PERSOARABIC_PUNCTUATIONS)
SCRIPT_CODE_TO_NUMERALS = {
"Beng": "০১২৩৪৫৬৭৮৯",
"Deva": "०१२३४५६७८९",
"Gujr": "૦૧૨૩૪૫૬૭૮૯",
"Guru": "੦੧੨੩੪੫੬੭੮੯",
"Orya": "୦୧୨୩୪୫୬୭୮୯",
"Knda": "೦೧೨೩೪೫೬೭೮೯",
"Mlym": "൦൧൨൩൪൫൬൭൮൯",
"Sinh": "෦෧෨෩෪෫෬෭෮෯",
"Taml": "௦௧௨௩௪௫௬௭௮௯",
"Telu": "౦౧౨౩౪౫౬౭౮౯",
"Mtei": "꯰꯱꯲꯳꯴꯵꯶꯷꯸꯹",
"Arab": "۰۱۲۳۴۵۶۷۸۹",
"Aran": "۰۱۲۳۴۵۶۷۸۹",
"Latn": "0123456789",
"Olck": "᱐᱑᱒᱓᱔᱕᱖᱗᱘᱙",
"Thaa": "٠١٢٣٤٥٦٧٨٩",
}
LANG_CODE_TO_NUMERALS = {
lang_code: SCRIPT_CODE_TO_NUMERALS[script_code]
for lang_code, script_code in LANG_CODE_TO_SCRIPT_CODE.items()
}
INDIC_TO_STANDARD_NUMERALS_GLOBAL_MAP = {}
for lang_code, lang_numerals in LANG_CODE_TO_NUMERALS.items():
map_dict = {lang_numeral: en_numeral for lang_numeral, en_numeral in zip(lang_numerals, LANG_CODE_TO_NUMERALS["en"])}
INDIC_TO_STANDARD_NUMERALS_GLOBAL_MAP.update(map_dict)
INDIC_TO_STANDARD_NUMERALS_TRANSLATOR = str.maketrans(INDIC_TO_STANDARD_NUMERALS_GLOBAL_MAP)
NATIVE_TO_LATIN_NUMERALS_TRANSLATORS = {
lang_code: str.maketrans({lang_numeral: en_numeral for lang_numeral, en_numeral in zip(lang_numerals, LANG_CODE_TO_NUMERALS["en"])})
for lang_code, lang_numerals in LANG_CODE_TO_NUMERALS.items()
if lang_code != "en"
}
LATIN_TO_NATIVE_NUMERALS_TRANSLATORS = {
lang_code: str.maketrans({en_numeral: lang_numeral for en_numeral, lang_numeral in zip(LANG_CODE_TO_NUMERALS["en"], lang_numerals)})
for lang_code, lang_numerals in LANG_CODE_TO_NUMERALS.items()
if lang_code != "en"
}
WORDFINAL_INDIC_VIRAMA_REGEX = re_compile("(\u09cd|\u094d|\u0acd|\u0a4d|\u0b4d|\u0ccd|\u0d4d|\u0dca|\u0bcd|\u0c4d|\uaaf6)$")
def hardfix_wordfinal_virama(word):
return WORDFINAL_INDIC_VIRAMA_REGEX.sub("\\1\u200c", word)
ODIA_CONFUSING_YUKTAKSHARA_REGEX = re_compile("(\u0b4d)(ବ|ଵ|ୱ|ଯ|ୟ)")
def fix_odia_confusing_ambiguous_yuktakshara(word):
return ODIA_CONFUSING_YUKTAKSHARA_REGEX.sub("\\1\u200c\\2", word)
LATIN_WORDFINAL_CONSONANTS_CHECKER_REGEX = re_compile(".*([bcdfghjklmnpqrstvwxyz])$")
DEVANAGARI_WORDFINAL_CONSONANTS_REGEX = re_compile("([\u0915-\u0939\u0958-\u095f\u0979-\u097c\u097e-\u097f])$")
def explicit_devanagari_wordfinal_schwa_delete(roman_word, indic_word):
if LATIN_WORDFINAL_CONSONANTS_CHECKER_REGEX.match(roman_word):
indic_word = DEVANAGARI_WORDFINAL_CONSONANTS_REGEX.sub("\\1\u094d", indic_word)
return indic_word
def rreplace(text, find_pattern, replace_pattern, match_count=1):
splits = text.rsplit(find_pattern, match_count)
return replace_pattern.join(splits)
LANG_WORD_REGEXES = {
lang_name: re_compile(f"[{SCRIPT_CODE_TO_UNICODE_CHARS_RANGE_STR[script_name]}]+")
for lang_name, script_name in LANG_CODE_TO_SCRIPT_CODE.items()
}
normalizer_factory = IndicNormalizerFactory()
Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints")
Translation = namedtuple("Translation", "src_str hypos pos_scores alignments")
def make_batches(lines, cfg, task, max_positions, encode_fn):
def encode_fn_target(x):
return encode_fn(x)
if cfg.generation.constraints:
batch_constraints = [list() for _ in lines]
for i, line in enumerate(lines):
if "\t" in line:
lines[i], *batch_constraints[i] = line.split("\t")
for i, constraint_list in enumerate(batch_constraints):
batch_constraints[i] = [
task.target_dictionary.encode_line(
encode_fn_target(constraint),
append_eos=False,
add_if_not_exist=False,
)
for constraint in constraint_list
]
if cfg.generation.constraints:
constraints_tensor = pack_constraints(batch_constraints)
else:
constraints_tensor = None
tokens, lengths = task.get_interactive_tokens_and_lengths(lines, encode_fn)
itr = task.get_batch_iterator(
dataset=task.build_dataset_for_inference(
tokens, lengths, constraints=constraints_tensor
),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=max_positions,
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
).next_epoch_itr(shuffle=False)
for batch in itr:
ids = batch["id"]
src_tokens = batch["net_input"]["src_tokens"]
src_lengths = batch["net_input"]["src_lengths"]
constraints = batch.get("constraints", None)
yield Batch(
ids=ids,
src_tokens=src_tokens,
src_lengths=src_lengths,
constraints=constraints,
)
class Transliterator:
def __init__(
self, data_bin_dir, model_checkpoint_path, lang_pairs_csv, lang_list_file, beam,device, batch_size = 32,
):
self.parser = options.get_interactive_generation_parser()
self.parser.set_defaults(
path = model_checkpoint_path,
num_wokers = -1,
batch_size = batch_size,
buffer_size = batch_size + 1,
task = "translation_multi_simple_epoch",
beam = beam,
)
self.args = options.parse_args_and_arch(self.parser, input_args = [data_bin_dir] )
self.args.skip_invalid_size_inputs_valid_test = False
self.args.lang_pairs = lang_pairs_csv
self.args.lang_dict = lang_list_file
self.cfg = convert_namespace_to_omegaconf(self.args)
if isinstance(self.cfg, Namespace):
self.cfg = convert_namespace_to_omegaconf(self.cfg)
self.total_translate_time = 0
utils.import_user_module(self.cfg.common)
if self.cfg.interactive.buffer_size < 1:
self.cfg.interactive.buffer_size = 1
if self.cfg.dataset.max_tokens is None and self.cfg.dataset.batch_size is None:
self.cfg.dataset.batch_size = 1
assert (
not self.cfg.generation.sampling or self.cfg.generation.nbest == self.cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
not self.cfg.dataset.batch_size
or self.cfg.dataset.batch_size <= self.cfg.interactive.buffer_size
), "--batch-size cannot be larger than --buffer-size"
self.use_cuda = device.type == "cuda"
self.task = tasks.setup_task(self.cfg.task)
overrides = ast_literal_eval(self.cfg.common_eval.model_overrides)
self.models, _model_args = checkpoint_utils.load_model_ensemble(
utils.split_paths(self.cfg.common_eval.path),
arg_overrides=overrides,
task=self.task,
suffix=self.cfg.checkpoint.checkpoint_suffix,
strict=(self.cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=self.cfg.checkpoint.checkpoint_shard_count,
)
self.src_dict = self.task.source_dictionary
self.tgt_dict = self.task.target_dictionary
for i in range(len(self.models)):
if self.models[i] is None:
continue
if self.cfg.common.fp16:
self.models[i].half()
if self.use_cuda and not self.cfg.distributed_training.pipeline_model_parallel:
self.models[i].cuda()
self.models[i].prepare_for_inference_(self.cfg)
self.generator = self.task.build_generator(self.models, self.cfg.generation)
self.tokenizer = self.task.build_tokenizer(self.cfg.tokenizer)
self.bpe = self.task.build_bpe(self.cfg.bpe)
self.align_dict = utils.load_align_dict(self.cfg.generation.replace_unk)
self.max_positions = utils.resolve_max_positions(
self.task.max_positions(), *[model.max_positions() for model in self.models]
)
def encode_fn(self, x):
if self.tokenizer is not None:
x = self.tokenizer.encode(x)
if self.bpe is not None:
x = self.bpe.encode(x)
return x
def decode_fn(self, x):
if self.bpe is not None:
x = self.bpe.decode(x)
if self.tokenizer is not None:
x = self.tokenizer.decode(x)
return x
def translate(self, inputs, nbest=1):
start_id = 0
results = []
for batch in make_batches(inputs, self.cfg, self.task, self.max_positions, self.encode_fn):
bsz = batch.src_tokens.size(0)
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
constraints = batch.constraints
if self.use_cuda:
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
if constraints is not None:
constraints = constraints.cuda()
sample = {
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
}
translate_start_time = get_time()
translations = self.task.inference_step(
self.generator, self.models, sample, constraints=constraints
)
translate_time = get_time() - translate_start_time
self.total_translate_time += translate_time
list_constraints = [[] for _ in range(bsz)]
if self.cfg.generation.constraints:
list_constraints = [unpack_constraints(c) for c in constraints]
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
src_tokens_i = utils.strip_pad(src_tokens[i], self.tgt_dict.pad())
constraints = list_constraints[i]
results.append(
(
start_id + id,
src_tokens_i,
hypos,
{
"constraints": constraints,
"time": translate_time / len(translations),
},
)
)
result_str = ""
for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
src_str = ""
if self.src_dict is not None:
src_str = self.src_dict.string(src_tokens, self.cfg.common_eval.post_process)
result_str += "S-{}\t{}".format(id_, src_str) + '\n'
result_str += "W-{}\t{:.3f}\tseconds".format(id_, info["time"]) + '\n'
for constraint in info["constraints"]:
result_str += "C-{}\t{}".format(
id_,
self.tgt_dict.string(constraint, self.cfg.common_eval.post_process),
) + '\n'
for hypo in hypos[: min(len(hypos), nbest)]:
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str=src_str,
alignment=hypo["alignment"],
align_dict=self.align_dict,
tgt_dict=self.tgt_dict,
remove_bpe=self.cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(self.generator),
)
detok_hypo_str = self.decode_fn(hypo_str)
score = hypo["score"] / math_log(2)
result_str += "H-{}\t{}\t{}".format(id_, score, hypo_str) + '\n'
result_str += "D-{}\t{}\t{}".format(id_, score, detok_hypo_str) + '\n'
result_str += "P-{}\t{}".format(
id_,
" ".join(
map(
lambda x: "{:.4f}".format(x),
hypo["positional_scores"].div_(math_log(2)).tolist(),
)
),
) + '\n'
if self.cfg.generation.print_alignment:
alignment_str = " ".join(
["{}-{}".format(src, tgt) for src, tgt in alignment]
)
result_str += "A-{}\t{}".format(id_, alignment_str) + '\n'
return result_str
class BaseEngineTransformer():
def __init__(self, word_prob_dicts_files,corpus_bin_dir,lang_list,model_file,tgt_langs, beam_width, rescore,device):
self.all_supported_langs = {'as', 'bn', 'brx', 'gom', 'gu', 'hi', 'kn', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sd', 'si', 'ta', 'te', 'ur'}
print("Initializing Multilingual model for transliteration")
if 'en' in tgt_langs:
lang_pairs_csv = ','.join([lang+"-en" for lang in self.all_supported_langs])
else:
lang_pairs_csv = ','.join(["en-"+lang for lang in self.all_supported_langs])
self.transliterator = Transliterator(
corpus_bin_dir,
model_file,
lang_pairs_csv = lang_pairs_csv,
lang_list_file=lang_list,
device=device,
beam = beam_width, batch_size = 32,
)
self.beam_width = beam_width
self._rescore = rescore
if self._rescore:
self.word_prob_dicts={lang:json_load(open(word_prob_dicts_files[lang])) for lang in tgt_langs}
def indic_normalize(self, words, lang_code):
if lang_code not in ['gom', 'ks', 'ur', 'mai', 'brx', 'mni']:
normalizer = normalizer_factory.get_normalizer(lang_code)
words = [ normalizer.normalize(word) for word in words ]
if lang_code in ['mai', 'brx' ]:
normalizer = normalizer_factory.get_normalizer('hi')
words = [ normalizer.normalize(word) for word in words ]
if lang_code in [ 'ur' ]:
words = [ shahmukhi_normalize(word) for word in words ]
if lang_code == 'gom':
normalizer = normalizer_factory.get_normalizer('kK')
words = [ normalizer.normalize(word) for word in words ]
return words
def pre_process(self, words, src_lang, tgt_lang):
if src_lang != 'en':
self.indic_normalize(words, src_lang)
words = [' '.join(list(word.lower())) for word in words]
lang_code = tgt_lang if src_lang == 'en' else src_lang
words = ['__'+ lang_code +'__ ' + word for word in words]
return words
def rescore(self, res_dict, result_dict, tgt_lang, alpha ):
alpha = alpha
word_prob_dict = self.word_prob_dicts[tgt_lang]
candidate_word_prob_norm_dict = {}
candidate_word_result_norm_dict = {}
input_data = {}
for i in res_dict.keys():
input_data[res_dict[i]['S']] = []
for j in range(len(res_dict[i]['H'])):
input_data[res_dict[i]['S']].append( res_dict[i]['H'][j][0] )
for src_word in input_data.keys():
candidates = input_data[src_word]
candidates = [' '.join(word.split(' ')) for word in candidates]
total_score = 0
if src_word.lower() in result_dict.keys():
for candidate_word in candidates:
if candidate_word in result_dict[src_word.lower()].keys():
total_score += result_dict[src_word.lower()][candidate_word]
candidate_word_result_norm_dict[src_word.lower()] = {}
for candidate_word in candidates:
candidate_word_result_norm_dict[src_word.lower()][candidate_word] = (result_dict[src_word.lower()][candidate_word]/total_score)
candidates = [''.join(word.split(' ')) for word in candidates ]
total_prob = 0
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
total_prob += word_prob_dict[candidate_word]
candidate_word_prob_norm_dict[src_word.lower()] = {}
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
candidate_word_prob_norm_dict[src_word.lower()][candidate_word] = (word_prob_dict[candidate_word]/total_prob)
output_data = {}
for src_word in input_data.keys():
temp_candidates_tuple_list = []
candidates = input_data[src_word]
candidates = [ ''.join(word.split(' ')) for word in candidates]
for candidate_word in candidates:
if candidate_word in word_prob_dict.keys():
temp_candidates_tuple_list.append((candidate_word, alpha*candidate_word_result_norm_dict[src_word.lower()][' '.join(list(candidate_word))] + (1-alpha)*candidate_word_prob_norm_dict[src_word.lower()][candidate_word] ))
else:
temp_candidates_tuple_list.append((candidate_word, 0 ))
temp_candidates_tuple_list.sort(key = lambda x: x[1], reverse = True )
temp_candidates_list = []
for cadidate_tuple in temp_candidates_tuple_list:
temp_candidates_list.append(' '.join(list(cadidate_tuple[0])))
output_data[src_word] = temp_candidates_list
return output_data
def post_process(self, translation_str, tgt_lang):
lines = translation_str.split('\n')
list_s = [line for line in lines if 'S-' in line]
list_h = [line for line in lines if 'H-' in line]
list_s.sort(key = lambda x: int(x.split('\t')[0].split('-')[1]) )
list_h.sort(key = lambda x: int(x.split('\t')[0].split('-')[1]) )
res_dict = {}
for s in list_s:
s_id = int(s.split('\t')[0].split('-')[1])
res_dict[s_id] = { 'S' : s.split('\t')[1] }
res_dict[s_id]['H'] = []
for h in list_h:
h_id = int(h.split('\t')[0].split('-')[1])
if s_id == h_id:
res_dict[s_id]['H'].append( ( h.split('\t')[2], pow(2,float(h.split('\t')[1])) ) )
for r in res_dict.keys():
res_dict[r]['H'].sort(key = lambda x : float(x[1]) ,reverse =True)
result_dict = {}
for i in res_dict.keys():
result_dict[res_dict[i]['S']] = {}
for j in range(len(res_dict[i]['H'])):
result_dict[res_dict[i]['S']][res_dict[i]['H'][j][0]] = res_dict[i]['H'][j][1]
transliterated_word_list = []
if self._rescore:
output_dir = self.rescore(res_dict, result_dict, tgt_lang, alpha = 0.9)
for src_word in output_dir.keys():
for j in range(len(output_dir[src_word])):
transliterated_word_list.append( output_dir[src_word][j] )
else:
for i in res_dict.keys():
for j in range(len(res_dict[i]['H'])):
transliterated_word_list.append( res_dict[i]['H'][j][0] )
transliterated_word_list = [''.join(word.split(' ')) for word in transliterated_word_list]
return transliterated_word_list
def _transliterate_word(self, text, src_lang, tgt_lang, topk=4, nativize_punctuations=True, nativize_numerals=False):
if not text:
return text
text = text.lower().strip()
if src_lang != 'en':
text = text.translate(INDIC_TO_LATIN_PUNCT_TRANSLATOR)
text = text.translate(INDIC_TO_STANDARD_NUMERALS_TRANSLATOR)
else:
if nativize_punctuations:
if tgt_lang in RTL_LANG_CODES:
text = text.translate(LATIN_TO_PERSOARABIC_PUNC_TRANSLATOR)
text = nativize_latin_fullstop(text, tgt_lang)
if nativize_numerals:
text = text.translate(LATIN_TO_NATIVE_NUMERALS_TRANSLATORS[tgt_lang])
matches = LANG_WORD_REGEXES[src_lang].findall(text)
if not matches:
return [text]
src_word = matches[-1]
transliteration_list = self.batch_transliterate_words([src_word], src_lang, tgt_lang, topk=topk)[0]
if tgt_lang != 'en' or tgt_lang != 'sa':
for i in range(len(transliteration_list)):
transliteration_list[i] = hardfix_wordfinal_virama(transliteration_list[i])
if src_word == text:
return transliteration_list
return [
rreplace(text, src_word, tgt_word)
for tgt_word in transliteration_list
]
def batch_transliterate_words(self, words, src_lang, tgt_lang, topk=4):
perprcossed_words = self.pre_process(words, src_lang, tgt_lang)
translation_str = self.transliterator.translate(perprcossed_words, nbest=topk)
transliteration_list = self.post_process(translation_str, tgt_lang)
if tgt_lang == 'mr':
for i in range(len(transliteration_list)):
transliteration_list[i] = transliteration_list[i].replace("अॅ", 'ॲ')
if tgt_lang == 'or':
for i in range(len(transliteration_list)):
transliteration_list[i] = fix_odia_confusing_ambiguous_yuktakshara(transliteration_list[i])
if tgt_lang == 'sa':
for i in range(len(transliteration_list)):
transliteration_list[i] = explicit_devanagari_wordfinal_schwa_delete(words[0], transliteration_list[i])
transliteration_list = list(dict.fromkeys(transliteration_list))
return [transliteration_list]
def _transliterate_sentence(self, text, src_lang, tgt_lang, nativize_punctuations=True, nativize_numerals=False):
if not text:
return text
text = text.lower().strip()
if src_lang != 'en':
text = text.translate(INDIC_TO_LATIN_PUNCT_TRANSLATOR)
text = text.translate(INDIC_TO_STANDARD_NUMERALS_TRANSLATOR)
else:
if nativize_punctuations:
if tgt_lang in RTL_LANG_CODES:
text = text.translate(LATIN_TO_PERSOARABIC_PUNC_TRANSLATOR)
text = nativize_latin_fullstop(text, tgt_lang)
if nativize_numerals:
text = text.translate(LATIN_TO_NATIVE_NUMERALS_TRANSLATORS[tgt_lang])
matches = LANG_WORD_REGEXES[src_lang].findall(text)
if not matches:
return text
out_str = text
for match in matches:
result = self.batch_transliterate_words([match], src_lang, tgt_lang)[0][0]
out_str = re_sub(match, result, out_str, 1)
return out_str