File size: 22,783 Bytes
7d68ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
from numpy import asarray as np_asarray,int64 as np_int64
from json import load as json_load
import torch
import torch.nn as nn
from torch import device as Device

class Encoder(nn.Module):
    def __init__(self, input_dim, embed_dim, hidden_dim ,

                       rnn_type = 'gru', layers = 1,

                       bidirectional =False,

                       dropout = 0, device = "cpu"):
        super(Encoder, self).__init__()

        self.input_dim = input_dim #src_vocab_sz
        self.enc_embed_dim = embed_dim
        self.enc_hidden_dim = hidden_dim
        self.enc_rnn_type = rnn_type
        self.enc_layers = layers
        self.enc_directions = 2 if bidirectional else 1
        self.device = device

        self.embedding = nn.Embedding(self.input_dim, self.enc_embed_dim)

        if self.enc_rnn_type == "gru":
            self.enc_rnn = nn.GRU(input_size= self.enc_embed_dim,
                          hidden_size= self.enc_hidden_dim,
                          num_layers= self.enc_layers,
                          bidirectional= bidirectional)
        elif self.enc_rnn_type == "lstm":
            self.enc_rnn = nn.LSTM(input_size= self.enc_embed_dim,
                          hidden_size= self.enc_hidden_dim,
                          num_layers= self.enc_layers,
                          bidirectional= bidirectional)
        else:
            raise Exception("XlitError: unknown RNN type mentioned")

    def forward(self, x, x_sz, hidden = None):
        """

        x_sz: (batch_size, 1) -  Unpadded sequence lengths used for pack_pad

        """
        batch_sz = x.shape[0]
        # x: batch_size, max_length, enc_embed_dim
        x = self.embedding(x)

        ## pack the padded data
        # x: max_length, batch_size, enc_embed_dim -> for pack_pad
        x = x.permute(1,0,2)
        x = nn.utils.rnn.pack_padded_sequence(x, x_sz, enforce_sorted=False) # unpad

        # output: packed_size, batch_size, enc_embed_dim
        # hidden: n_layer**num_directions, batch_size, hidden_dim | if LSTM (h_n, c_n)
        output, hidden = self.enc_rnn(x) # gru returns hidden state of all timesteps as well as hidden state at last timestep

        ## pad the sequence to the max length in the batch
        # output: max_length, batch_size, enc_emb_dim*directions)
        output, _ = nn.utils.rnn.pad_packed_sequence(output)

        # output: batch_size, max_length, hidden_dim
        output = output.permute(1,0,2)

        return output, hidden

    def get_word_embedding(self, x):
        """

        """
        x_sz = torch.tensor([len(x)])
        x_ = torch.tensor(x).unsqueeze(0).to(dtype=torch.long)
        # x: 1, max_length, enc_embed_dim
        x = self.embedding(x_)

        ## pack the padded data
        # x: max_length, 1, enc_embed_dim -> for pack_pad
        x = x.permute(1,0,2)
        x = nn.utils.rnn.pack_padded_sequence(x, x_sz, enforce_sorted=False) # unpad

        # output: packed_size, 1, enc_embed_dim
        # hidden: n_layer**num_directions, 1, hidden_dim | if LSTM (h_n, c_n)
        output, hidden = self.enc_rnn(x) # gru returns hidden state of all timesteps as well as hidden state at last timestep

        out_embed = hidden[0].squeeze()

        return out_embed

class Decoder(nn.Module):
    def __init__(self, output_dim, embed_dim, hidden_dim,

                       rnn_type = 'gru', layers = 1,

                       use_attention = True,

                       enc_outstate_dim = None, # enc_directions * enc_hidden_dim

                       dropout = 0, device = "cpu"):
        super(Decoder, self).__init__()

        self.output_dim = output_dim #tgt_vocab_sz
        self.dec_hidden_dim = hidden_dim
        self.dec_embed_dim = embed_dim
        self.dec_rnn_type = rnn_type
        self.dec_layers = layers
        self.use_attention = use_attention
        self.device = device
        if self.use_attention:
            self.enc_outstate_dim = enc_outstate_dim if enc_outstate_dim else hidden_dim
        else:
            self.enc_outstate_dim = 0


        self.embedding = nn.Embedding(self.output_dim, self.dec_embed_dim)

        if self.dec_rnn_type == 'gru':
            self.dec_rnn = nn.GRU(input_size= self.dec_embed_dim + self.enc_outstate_dim, # to concat attention_output
                          hidden_size= self.dec_hidden_dim, # previous Hidden
                          num_layers= self.dec_layers,
                          batch_first = True )
        elif self.dec_rnn_type == "lstm":
            self.dec_rnn = nn.LSTM(input_size= self.dec_embed_dim + self.enc_outstate_dim, # to concat attention_output
                          hidden_size= self.dec_hidden_dim, # previous Hidden
                          num_layers= self.dec_layers,
                          batch_first = True )
        else:
            raise Exception("XlitError: unknown RNN type mentioned")

        self.fc = nn.Sequential(
            nn.Linear(self.dec_hidden_dim, self.dec_embed_dim), nn.LeakyReLU(),
            # nn.Linear(self.dec_embed_dim, self.dec_embed_dim), nn.LeakyReLU(), # removing to reduce size
            nn.Linear(self.dec_embed_dim, self.output_dim),
            )

        ##----- Attention ----------
        if self.use_attention:
            self.W1 = nn.Linear( self.enc_outstate_dim, self.dec_hidden_dim)
            self.W2 = nn.Linear( self.dec_hidden_dim, self.dec_hidden_dim)
            self.V = nn.Linear( self.dec_hidden_dim, 1)

    def attention(self, x, hidden, enc_output):
        '''

        x: (batch_size, 1, dec_embed_dim) -> after Embedding

        enc_output: batch_size, max_length, enc_hidden_dim *num_directions

        hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)

        '''

        ## perform addition to calculate the score

        # hidden_with_time_axis: batch_size, 1, hidden_dim
        ## hidden_with_time_axis = hidden.permute(1, 0, 2) ## replaced with below 2lines
        hidden_with_time_axis = torch.sum(hidden, axis=0) if self.dec_rnn_type != "lstm" \
                                else torch.sum(hidden[0], axis=0) # h_n

        hidden_with_time_axis = hidden_with_time_axis.unsqueeze(1)

        # score: batch_size, max_length, hidden_dim
        score = torch.tanh(self.W1(enc_output) + self.W2(hidden_with_time_axis))

        # attention_weights: batch_size, max_length, 1
        # we get 1 at the last axis because we are applying score to self.V
        attention_weights = torch.softmax(self.V(score), dim=1)

        # context_vector shape after sum == (batch_size, hidden_dim)
        context_vector = attention_weights * enc_output
        context_vector = torch.sum(context_vector, dim=1)
        # context_vector: batch_size, 1, hidden_dim
        context_vector = context_vector.unsqueeze(1)

        # attend_out (batch_size, 1, dec_embed_dim + hidden_size)
        attend_out = torch.cat((context_vector, x), -1)

        return attend_out, attention_weights

    def forward(self, x, hidden, enc_output):
        '''

        x: (batch_size, 1)

        enc_output: batch_size, max_length, dec_embed_dim

        hidden: n_layer, batch_size, hidden_size | lstm: (h_n, c_n)

        '''
        if (hidden is None) and (self.use_attention is False):
            raise Exception( "XlitError: No use of a decoder with No attention and No Hidden")

        batch_sz = x.shape[0]

        if hidden is None:
            # hidden: n_layers, batch_size, hidden_dim
            hid_for_att = torch.zeros((self.dec_layers, batch_sz,
                                    self.dec_hidden_dim )).to(self.device)
        elif self.dec_rnn_type == 'lstm':
            hid_for_att = hidden[1] # c_n

        # x (batch_size, 1, dec_embed_dim) -> after embedding
        x = self.embedding(x)

        if self.use_attention:
            # x (batch_size, 1, dec_embed_dim + hidden_size) -> after attention
            # aw: (batch_size, max_length, 1)
            x, aw = self.attention( x, hidden, enc_output)
        else:
            x, aw = x, 0

        # passing the concatenated vector to the GRU
        # output: (batch_size, n_layers, hidden_size)
        # hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
        output, hidden = self.dec_rnn(x, hidden) if hidden is not None else self.dec_rnn(x)

        # output :shp: (batch_size * 1, hidden_size)
        output =  output.view(-1, output.size(2))

        # output :shp: (batch_size * 1, output_dim)
        output = self.fc(output)

        return output, hidden, aw

class Seq2Seq(nn.Module):
    """

    Class dependency: Encoder, Decoder

    """
    def __init__(self, encoder, decoder, pass_enc2dec_hid=False, dropout = 0, device = "cpu"):
        super(Seq2Seq, self).__init__()

        self.encoder = encoder
        self.decoder = decoder
        self.device = device
        self.pass_enc2dec_hid = pass_enc2dec_hid
        _force_en2dec_hid_conv = False

        if self.pass_enc2dec_hid:
            assert decoder.dec_hidden_dim == encoder.enc_hidden_dim, "Hidden Dimension of encoder and decoder must be same, or unset `pass_enc2dec_hid`"
        if decoder.use_attention:
            assert decoder.enc_outstate_dim == encoder.enc_directions*encoder.enc_hidden_dim,"Set `enc_out_dim` correctly in decoder"
        assert self.pass_enc2dec_hid or decoder.use_attention, "No use of a decoder with No attention and No Hidden from Encoder"


        self.use_conv_4_enc2dec_hid = False
        if  (
              ( self.pass_enc2dec_hid and
                (encoder.enc_directions * encoder.enc_layers != decoder.dec_layers)
              )
              or _force_en2dec_hid_conv
            ):
            if encoder.enc_rnn_type == "lstm" or encoder.enc_rnn_type == "lstm":
                raise Exception("XlitError: conv for enc2dec_hid not implemented; Change the layer numbers appropriately")

            self.use_conv_4_enc2dec_hid = True
            self.enc_hid_1ax = encoder.enc_directions * encoder.enc_layers
            self.dec_hid_1ax = decoder.dec_layers
            self.e2d_hidden_conv = nn.Conv1d(self.enc_hid_1ax, self.dec_hid_1ax, 1)

    def enc2dec_hidden(self, enc_hidden):
        """

        enc_hidden: n_layer, batch_size, hidden_dim*num_directions

        TODO: Implement the logic for LSTm bsed model

        """
        # hidden: batch_size, enc_layer*num_directions, enc_hidden_dim
        hidden = enc_hidden.permute(1,0,2).contiguous()
        # hidden: batch_size, dec_layers, dec_hidden_dim -> [N,C,Tstep]
        hidden = self.e2d_hidden_conv(hidden)

        # hidden: dec_layers, batch_size , dec_hidden_dim
        hidden_for_dec = hidden.permute(1,0,2).contiguous()

        return hidden_for_dec

    def active_beam_inference(self, src, beam_width=3, max_tgt_sz=50):
        ''' Search based decoding

        src: (sequence_len)

        '''
        def _avg_score(p_tup):
            """ Used for Sorting

            TODO: Dividing by length of sequence power alpha as hyperparam

            """
            return p_tup[0]

        batch_size = 1
        start_tok = src[0]
        end_tok = src[-1]
        src_sz = torch.tensor([len(src)])
        src_ = src.unsqueeze(0)

        # enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
        # enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
        enc_output, enc_hidden = self.encoder(src_, src_sz)

        if self.pass_enc2dec_hid:
        # dec_hidden: dec_layers, batch_size , dec_hidden_dim
            if self.use_conv_4_enc2dec_hid:
                init_dec_hidden = self.enc2dec_hidden(enc_hidden)
            else:
                init_dec_hidden = enc_hidden
        else:
            # dec_hidden -> Will be initialized to zeros internally
            init_dec_hidden = None

        # top_pred[][0] = Σ-log_softmax
        # top_pred[][1] = sequence torch.tensor shape: (1)
        # top_pred[][2] = dec_hidden
        top_pred_list = [ (0, start_tok.unsqueeze(0) , init_dec_hidden) ]

        for t in range(max_tgt_sz):
            cur_pred_list = []

            for p_tup in top_pred_list:
                if p_tup[1][-1] == end_tok:
                    cur_pred_list.append(p_tup)
                    continue

                # dec_hidden: dec_layers, 1, hidden_dim
                # dec_output: 1, output_dim
                dec_output, dec_hidden, _ = self.decoder( x = p_tup[1][-1].view(1,1), #dec_input: (1,1)
                                                    hidden = p_tup[2],
                                                    enc_output = enc_output, )

                ## π{prob} = Σ{log(prob)} -> to prevent diminishing
                # dec_output: (1, output_dim)
                dec_output = nn.functional.log_softmax(dec_output, dim=1)
                # pred_topk.values & pred_topk.indices: (1, beam_width)
                pred_topk = torch.topk(dec_output, k=beam_width, dim=1)

                for i in range(beam_width):
                    sig_logsmx_ = p_tup[0] + pred_topk.values[0][i]
                    # seq_tensor_ : (seq_len)
                    seq_tensor_ = torch.cat( (p_tup[1], pred_topk.indices[0][i].view(1)) )

                    cur_pred_list.append( (sig_logsmx_, seq_tensor_, dec_hidden) )

            cur_pred_list.sort(key = _avg_score, reverse =True) # Maximized order
            top_pred_list = cur_pred_list[:beam_width]

            # check if end_tok of all topk
            end_flags_ = [1 if t[1][-1] == end_tok else 0 for t in top_pred_list]
            if beam_width == sum( end_flags_ ): break

        pred_tnsr_list = [t[1] for t in top_pred_list ]

        return pred_tnsr_list

class GlyphStrawboss():
    def __init__(self, glyphs = 'en'):
        """ list of letters in a language in unicode

        lang: ISO Language code

        glyphs: json file with script information

        """
        if glyphs == 'en':
            # Smallcase alone
            self.glyphs = [chr(alpha) for alpha in range(97, 122+1)]
        else:
            self.dossier = json_load(open(glyphs, encoding='utf-8'))
            self.glyphs = self.dossier["glyphs"]
            self.numsym_map = self.dossier["numsym_map"]

        self.char2idx = {}
        self.idx2char = {}
        self._create_index()

    def _create_index(self):

        self.char2idx['_'] = 0  #pad
        self.char2idx['$'] = 1  #start
        self.char2idx['#'] = 2  #end
        self.char2idx['*'] = 3  #Mask
        self.char2idx["'"] = 4  #apostrophe U+0027
        self.char2idx['%'] = 5  #unused
        self.char2idx['!'] = 6  #unused

        # letter to index mapping
        for idx, char in enumerate(self.glyphs):
            self.char2idx[char] = idx + 7 # +7 token initially

        # index to letter mapping
        for char, idx in self.char2idx.items():
            self.idx2char[idx] = char

    def size(self):
        return len(self.char2idx)


    def word2xlitvec(self, word):
        """ Converts given string of gyphs(word) to vector(numpy)

        Also adds tokens for start and end

        """
        try:
            vec = [self.char2idx['$']] #start token
            for i in list(word):
                vec.append(self.char2idx[i])
            vec.append(self.char2idx['#']) #end token
            vec = np_asarray(vec, dtype=np_int64)
            return vec

        except Exception as error:
            print("XlitError: In word:", word)
            exit("Error Char not in Token: " + error)

    def xlitvec2word(self, vector):
        """ Converts vector(numpy) to string of glyphs(word)

        """
        char_list = []
        for i in vector:
            char_list.append(self.idx2char[i])

        word = "".join(char_list).replace('$','').replace('#','') # remove tokens
        word = word.replace("_", "").replace('*','') # remove tokens
        return word

class VocabSanitizer():
    def __init__(self, data_file):
        '''

        data_file: path to file conatining vocabulary list

        '''
        self.vocab_set  = set( json_load(open(data_file, encoding='utf-8')) )

    def reposition(self, word_list):
        '''Reorder Words in list

        '''
        new_list = []
        temp_ = word_list.copy()
        for v in word_list:
            if v in self.vocab_set:
                new_list.append(v)
                temp_.remove(v)
        new_list.extend(temp_)
        return new_list

class XlitPiston():
    """

    For handling prediction & post-processing of transliteration for a single language



    Class dependency: Seq2Seq, GlyphStrawboss, VocabSanitizer

    Global Variables: F_DIR

    """
    def __init__(self, weight_path, tglyph_cfg_file,vocab_file,device:Device, iglyph_cfg_file = "en"):
        self.device = device
        self.in_glyph_obj = GlyphStrawboss(iglyph_cfg_file)
        self.tgt_glyph_obj = GlyphStrawboss(glyphs = tglyph_cfg_file)
        if vocab_file:
            self.voc_sanitizer = VocabSanitizer(vocab_file)
        else:
            self.voc_sanitizer = None

        self._numsym_set = set(json_load(open(tglyph_cfg_file, encoding='utf-8'))["numsym_map"].keys() )
        self._inchar_set = set("abcdefghijklmnopqrstuvwxyz")
        self._natscr_set = set().union(self.tgt_glyph_obj.glyphs,
                            sum(self.tgt_glyph_obj.numsym_map.values(),[]) )


        ## Model Config Static                TODO: add defining in json support
        input_dim = self.in_glyph_obj.size()
        output_dim = self.tgt_glyph_obj.size()
        enc_emb_dim = 300
        dec_emb_dim = 300
        enc_hidden_dim = 512
        dec_hidden_dim = 512
        rnn_type = "lstm"
        enc2dec_hid = True
        attention = True
        enc_layers = 1
        dec_layers = 2
        m_dropout = 0
        enc_bidirect = True
        enc_outstate_dim = enc_hidden_dim * (2 if enc_bidirect else 1)

        enc = Encoder(  input_dim= input_dim, embed_dim = enc_emb_dim,
                        hidden_dim= enc_hidden_dim,
                        rnn_type = rnn_type, layers= enc_layers,
                        dropout= m_dropout, device = self.device,
                        bidirectional= enc_bidirect)
        dec = Decoder(  output_dim= output_dim, embed_dim = dec_emb_dim,
                        hidden_dim= dec_hidden_dim,
                        rnn_type = rnn_type, layers= dec_layers,
                        dropout= m_dropout,
                        use_attention = attention,
                        enc_outstate_dim= enc_outstate_dim,
                        device = self.device,)
        self.model = Seq2Seq(enc, dec, pass_enc2dec_hid=enc2dec_hid, device=self.device)
        self.model = self.model.to(self.device)
        weights = torch.load( weight_path, map_location=torch.device(self.device))

        self.model.load_state_dict(weights)
        self.model.eval()

    def character_model(self, word, beam_width = 1):
        in_vec = torch.from_numpy(self.in_glyph_obj.word2xlitvec(word)).to(self.device)
        ## change to active or passive beam
        p_out_list = self.model.active_beam_inference(in_vec, beam_width = beam_width)
        p_result = [ self.tgt_glyph_obj.xlitvec2word(out.cpu().numpy()) for out in p_out_list]

        if self.voc_sanitizer:
            return self.voc_sanitizer.reposition(p_result)

        #List type
        return p_result

    def numsym_model(self, seg):
        ''' tgt_glyph_obj.numsym_map[x] returns a list object

        '''
        if len(seg) == 1:
            return  [seg] + self.tgt_glyph_obj.numsym_map[seg]

        a = [self.tgt_glyph_obj.numsym_map[n][0] for n in seg]
        return [seg] + ["".join(a)]

    def _word_segementer(self, sequence):

        sequence = sequence.lower()
        accepted = set().union(self._numsym_set, self._inchar_set, self._natscr_set)
        # sequence = ''.join([i for i in sequence if i in accepted])

        segment = []
        idx = 0
        seq_ = list(sequence)
        while len(seq_):
            # for Number-Symbol
            temp = ""
            while len(seq_) and seq_[0] in self._numsym_set:
                temp += seq_[0]
                seq_.pop(0)
            if temp != "": segment.append(temp)

            # for Target Chars
            temp = ""
            while len(seq_) and seq_[0] in self._natscr_set:
                temp += seq_[0]
                seq_.pop(0)
            if temp != "": segment.append(temp)

            # for Input-Roman Chars
            temp = ""
            while len(seq_) and seq_[0] in self._inchar_set:
                temp += seq_[0]
                seq_.pop(0)
            if temp != "": segment.append(temp)

            temp = ""
            while len(seq_) and seq_[0] not in accepted:
                temp += seq_[0]
                seq_.pop(0)
            if temp != "": segment.append(temp)

        return segment

    def inferencer(self, sequence, beam_width = 10):

        seg = self._word_segementer(sequence[:120])
        lit_seg = []

        p = 0
        while p < len(seg):
            if seg[p][0] in self._natscr_set:
                lit_seg.append([seg[p]])
                p+=1

            elif seg[p][0] in self._inchar_set:
                lit_seg.append(self.character_model(seg[p], beam_width=beam_width))
                p+=1

            elif seg[p][0] in self._numsym_set: # num & punc
                lit_seg.append(self.numsym_model(seg[p]))
                p+=1
            else:
                lit_seg.append([ seg[p] ])
                p+=1

        ## IF segment less/equal to 2 then return combinotorial,
        ## ELSE only return top1 of each result concatenated
        if len(lit_seg) == 1:
            final_result = lit_seg[0]

        elif len(lit_seg) == 2:
            final_result = [""]
            for seg in lit_seg:
                new_result = []
                for s in seg:
                    for f in final_result:
                        new_result.append(f+s)
                final_result = new_result

        else:
            new_result = []
            for seg in lit_seg:
                new_result.append(seg[0])
            final_result = ["".join(new_result) ]

        return final_result