File size: 5,582 Bytes
ab176c3
 
 
 
 
 
 
 
 
 
 
d3c7abc
 
ab176c3
 
 
 
 
 
 
 
 
 
d3c7abc
ab176c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c7abc
ab176c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
from langchain_text_splitters import SpacyTextSplitter
from sentence_transformers import SentenceTransformer
from typing import Dict, List
import torch
from qdrant_client import http, models, QdrantClient
from transformers import T5Tokenizer, T5ForConditionalGeneration


class HybridVectorSearch:
    # dd="cuda"
    dd="cpu"
    cuda_device = torch.device("cpu")
    sparse_model = "naver/splade-v3"
    tokenizer = AutoTokenizer.from_pretrained(sparse_model)
    model = AutoModelForMaskedLM.from_pretrained(sparse_model).to(cuda_device)

    text_splitter = SpacyTextSplitter(chunk_size=1000)
    dense_encoder = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")

    model_name_t5 = "Falconsai/text_summarization"  # "t5-small"
    tokenizer_t5 = T5Tokenizer.from_pretrained(model_name_t5)
    model_t5 = T5ForConditionalGeneration.from_pretrained(model_name_t5).to(dd)

    client = QdrantClient(url="http://localhost:6333")
    earnings_collection = "earnings_calls"

    @staticmethod
    def reciprocal_rank_fusion(
        responses: List[List[http.models.ScoredPoint]], limit: int = 10
    ) -> List[http.models.ScoredPoint]:
        def compute_score(pos: int) -> float:
            ranking_constant = 2  # the constant mitigates the impact of high rankings by outlier systems
            return 1 / (ranking_constant + pos)

        scores: Dict[http.models.ExtendedPointId, float] = {}
        point_pile = {}
        for response in responses:
            for i, scored_point in enumerate(response):
                if scored_point.id in scores:
                    scores[scored_point.id] += compute_score(i)
                else:
                    point_pile[scored_point.id] = scored_point
                    scores[scored_point.id] = compute_score(i)

        sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True)
        sorted_points = []
        for point_id, score in sorted_scores[:limit]:
            point = point_pile[point_id]
            point.score = score
            sorted_points.append(point)
        return sorted_points

    @staticmethod
    def summary(text: str):
        inputs = HybridVectorSearch.tokenizer_t5.encode(
            f"summarize: {text}", return_tensors="pt", max_length=1024, truncation=True
        ).to(dd)
        summary_ids = HybridVectorSearch.model_t5.generate(
            inputs,
            max_length=512,
            min_length=100,
            length_penalty=2.0,
            num_beams=4,
            early_stopping=True,
        )
        summary = HybridVectorSearch.tokenizer_t5.decode(
            summary_ids[0], skip_special_tokens=True
        )
        return summary

    @staticmethod
    def compute_vector(text):
        tokens = HybridVectorSearch.tokenizer(text, return_tensors="pt").to(
            HybridVectorSearch.cuda_device
        )
        split_texts = []
        if len(tokens["input_ids"][0]) >= 512:
            summary = HybridVectorSearch.summary(text)
            split_texts = HybridVectorSearch.text_splitter.split_text(text)
            tokens = HybridVectorSearch.tokenizer(summary, return_tensors="pt").to(
                HybridVectorSearch.cuda_device
            )

        output = HybridVectorSearch.model(**tokens)
        logits, attention_mask = output.logits, tokens.attention_mask
        relu_log = torch.log(1 + torch.relu(logits))
        weighted_log = relu_log * attention_mask.unsqueeze(-1)
        max_val, _ = torch.max(weighted_log, dim=1)
        vec = max_val.squeeze()

        return vec, tokens, split_texts

    @staticmethod
    def search(query_text: str, symbol="AMD"):
        vectors, tokens, split_texts = HybridVectorSearch.compute_vector(query_text)
        indices = vectors.cpu().nonzero().numpy().flatten()
        values = vectors.cpu().detach().numpy()[indices]

        sparse_query_vector = models.SparseVector(indices=indices, values=values)

        query_vector = HybridVectorSearch.dense_encoder.encode(query_text).tolist()
        limit = 3

        dense_request = models.SearchRequest(
            vector=models.NamedVector(name="dense_vector", vector=query_vector),
            limit=limit,
            with_payload=True,
        )
        sparse_request = models.SearchRequest(
            vector=models.NamedSparseVector(
                name="sparse_vector", vector=sparse_query_vector
            ),
            limit=limit,
            with_payload=True,
        )

        (dense_request_response, sparse_request_response) = (
            HybridVectorSearch.client.search_batch(
                collection_name=HybridVectorSearch.earnings_collection,
                requests=[dense_request, sparse_request],
            )
        )
        ranked_search_response = HybridVectorSearch.reciprocal_rank_fusion(
            [dense_request_response, sparse_request_response], limit=10
        )

        search_response = ""
        for search_result in ranked_search_response:
            search_response += search_result.payload["conversation"] + "\n"
        return ranked_search_response

    @staticmethod
    def chat_search(query: str, chat_history):
        result = HybridVectorSearch.search(query)
        chat_history.append((query, "Search Results"))
        for search_result in result[:3]:
            text = search_result.payload["conversation"]
            summary = HybridVectorSearch.summary(text) + f'\n```\n{text} \n```'
            chat_history.append((None, summary))
        return "", chat_history