Spaces:
Sleeping
Sleeping
Commit
·
0d0abc7
1
Parent(s):
75b4925
first commit
Browse files- app.py +32 -0
- deepfake_detection.ipynb +0 -0
- requirements.txt +5 -0
- xception_deepfake_model.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision.all import *
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Load your trained model
|
5 |
+
learn = load_learner("xception_deepfake_model.pkl")
|
6 |
+
|
7 |
+
# Define the prediction function
|
8 |
+
def predict_image(img):
|
9 |
+
pred_class, pred_idx, probs = learn.predict(img)
|
10 |
+
return {
|
11 |
+
"Predicted Class": str(pred_class),
|
12 |
+
"Confidence Score": float(probs[pred_idx])
|
13 |
+
}
|
14 |
+
|
15 |
+
# Create the Gradio interface
|
16 |
+
interface = gr.Interface(
|
17 |
+
fn=predict_image,
|
18 |
+
inputs=gr.Image(type="pil", label="Upload an Image"),
|
19 |
+
outputs=[
|
20 |
+
gr.Label(label="Predicted Class"),
|
21 |
+
gr.Number(label="Confidence Score")
|
22 |
+
],
|
23 |
+
title="Deepfake Detection App",
|
24 |
+
description="Upload a face image to check if it’s manipulated or original."
|
25 |
+
)
|
26 |
+
|
27 |
+
# Run the app
|
28 |
+
if __name__ == "__main__":
|
29 |
+
interface.launch()
|
30 |
+
|
31 |
+
# This code creates a simple web app using Gradio to classify images as deepfake or real.
|
32 |
+
# The model is loaded from a file named "deepfake_detection.pkl".
|
deepfake_detection.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
torch
|
3 |
+
gradio
|
4 |
+
transformers
|
5 |
+
datasets
|
xception_deepfake_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e595377457a33e2aed9302a5771b910e2a6746436cf94b11bad3799e8cdb30e6
|
3 |
+
size 83737280
|