Spaces:
Paused
Paused
| ''' | |
| Created By Lewis Kamau Kimaru | |
| Sema translator fastapi implementation | |
| January 2024 | |
| Docker deployment | |
| ''' | |
| from fastapi import FastAPI, HTTPException, Request, Depends | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from fastapi.responses import HTMLResponse | |
| import uvicorn | |
| import ctranslate2 | |
| import sentencepiece as spm | |
| import fasttext | |
| import pytz | |
| from datetime import datetime | |
| import os | |
| app = FastAPI() | |
| origins = ["*"] | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=origins, | |
| allow_credentials=False, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| fasttext.FastText.eprint = lambda x: None | |
| # User interface | |
| templates_folder = os.path.join(os.path.dirname(__file__), "templates") | |
| # Get time of request | |
| def get_time(): | |
| nairobi_timezone = pytz.timezone('Africa/Nairobi') | |
| current_time_nairobi = datetime.now(nairobi_timezone) | |
| curr_day = current_time_nairobi.strftime('%A') | |
| curr_date = current_time_nairobi.strftime('%Y-%m-%d') | |
| curr_time = current_time_nairobi.strftime('%H:%M:%S') | |
| full_date = f"{curr_day} | {curr_date} | {curr_time}" | |
| return full_date, curr_time | |
| # Load the model and tokenizer ..... only once! | |
| beam_size = 1 # change to a smaller value for faster inference | |
| device = "cpu" # or "cuda" | |
| # Language Prediction model | |
| print("\nimporting Language Prediction model") | |
| lang_model_file = "lid218e.bin" | |
| lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file) | |
| lang_model = fasttext.load_model(lang_model_full_path) | |
| # Load the source SentencePiece model | |
| print("\nimporting SentencePiece model") | |
| sp_model_file = "spm.model" | |
| sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file) | |
| sp = spm.SentencePieceProcessor() | |
| sp.load(sp_model_full_path) | |
| # Import The Translator model | |
| print("\nimporting Translator model") | |
| ct_model_file = "sematrans-3.3B" | |
| ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file) | |
| translator = ctranslate2.Translator(ct_model_full_path, device) | |
| print('\nDone importing models\n') | |
| def translate_detect(userinput: str, target_lang: str): | |
| source_sents = [userinput] | |
| source_sents = [sent.strip() for sent in source_sents] | |
| target_prefix = [[target_lang]] * len(source_sents) | |
| # Predict the source language | |
| predictions = lang_model.predict(source_sents[0], k=1) | |
| source_lang = predictions[0][0].replace('__label__', '') | |
| # Subword the source sentences | |
| source_sents_subworded = sp.encode(source_sents, out_type=str) | |
| source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded] | |
| # Translate the source sentences | |
| translations = translator.translate_batch( | |
| source_sents_subworded, | |
| batch_type="tokens", | |
| max_batch_size=2024, | |
| beam_size=beam_size, | |
| target_prefix=target_prefix, | |
| ) | |
| translations = [translation[0]['tokens'] for translation in translations] | |
| # Desubword the target sentences | |
| translations_desubword = sp.decode(translations) | |
| translations_desubword = [sent[len(target_lang):] for sent in translations_desubword] | |
| # Return the source language and the translated text | |
| return source_lang, translations_desubword | |
| def translate_enter(userinput: str, source_lang: str, target_lang: str): | |
| source_sents = [userinput] | |
| source_sents = [sent.strip() for sent in source_sents] | |
| target_prefix = [[target_lang]] * len(source_sents) | |
| # Subword the source sentences | |
| source_sents_subworded = sp.encode(source_sents, out_type=str) | |
| source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded] | |
| # Translate the source sentences | |
| translations = translator.translate_batch(source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix) | |
| translations = [translation[0]['tokens'] for translation in translations] | |
| # Desubword the target sentences | |
| translations_desubword = sp.decode(translations) | |
| translations_desubword = [sent[len(target_lang):] for sent in translations_desubword] | |
| # Return the source language and the translated text | |
| return translations_desubword[0] | |
| async def read_root(request: Request): | |
| return HTMLResponse(content=open(os.path.join(templates_folder, "translator.html"), "r").read(), status_code=200) | |
| async def translate_detect_endpoint(request: Request): | |
| datad = await request.json() | |
| userinputd = datad.get("userinput") | |
| target_langd = datad.get("target_lang") | |
| dfull_date = get_time()[0] | |
| print(f"\nrequest: {dfull_date}\nTarget Language; {target_langd}, User Input: {userinputd}\n") | |
| if not userinputd or not target_langd: | |
| raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.") | |
| source_langd, translated_text_d = translate_detect(userinputd, target_langd) | |
| dcurrent_time = get_time()[1] | |
| print(f"\nresponse: {dcurrent_time}; ... Source_language: {source_langd}, Translated Text: {translated_text_d}\n\n") | |
| return { | |
| "source_language": source_langd, | |
| "translated_text": translated_text_d[0], | |
| } | |
| async def translate_enter_endpoint(request: Request): | |
| datae = await request.json() | |
| userinpute = datae.get("userinput") | |
| source_lange = datae.get("source_lang") | |
| target_lange = datae.get("target_lang") | |
| efull_date = get_time()[0] | |
| print(f"\nrequest: {efull_date}\nSource_language; {source_lange}, Target Language; {target_lange}, User Input: {userinpute}\n") | |
| if not userinpute or not target_lange: | |
| raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.") | |
| translated_text_e = translate_enter(userinpute, source_lange, target_lange) | |
| ecurrent_time = get_time()[1] | |
| print(f"\nresponse: {ecurrent_time}; ... Translated Text: {translated_text_e}\n\n") | |
| return { | |
| "translated_text": translated_text_e, | |
| } | |
| print("\nAPI starting .......\n") | |