Spaces:
Sleeping
Sleeping
Commit
·
6f96988
1
Parent(s):
4c95b3c
Corrected some multiple xlsx/docx file redaction issues. package updates.
Browse files- README.md +1 -1
- app.py +1 -1
- cdk/cdk_stack.py +15 -0
- index.qmd +1 -1
- pyproject.toml +2 -2
- requirements.txt +1 -1
- tools/custom_image_analyser_engine.py +0 -1
- tools/data_anonymise.py +39 -49
- tools/redaction_review.py +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ license: agpl-3.0
|
|
10 |
---
|
11 |
# Document redaction
|
12 |
|
13 |
-
version: 0.
|
14 |
|
15 |
Redact personally identifiable information (PII) from documents (pdf, images), open text, or tabular data (xlsx/csv/parquet). Please see the [User Guide](#user-guide) for a walkthrough on how to use the app. Below is a very brief overview.
|
16 |
|
|
|
10 |
---
|
11 |
# Document redaction
|
12 |
|
13 |
+
version: 1.0.0
|
14 |
|
15 |
Redact personally identifiable information (PII) from documents (pdf, images), open text, or tabular data (xlsx/csv/parquet). Please see the [User Guide](#user-guide) for a walkthrough on how to use the app. Below is a very brief overview.
|
16 |
|
app.py
CHANGED
@@ -536,7 +536,7 @@ with app:
|
|
536 |
|
537 |
pii_identification_method_drop_tabular = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = DEFAULT_PII_DETECTION_MODEL, choices=TABULAR_PII_DETECTION_MODELS)
|
538 |
|
539 |
-
with gr.Accordion("Anonymisation output format", open = False):
|
540 |
anon_strat = gr.Radio(choices=["replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely", "hash", "mask"], label="Select an anonymisation method.", value = "redact completely") # , "encrypt", "fake_first_name" are also available, but are not currently included as not that useful in current form
|
541 |
|
542 |
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
|
|
|
536 |
|
537 |
pii_identification_method_drop_tabular = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = DEFAULT_PII_DETECTION_MODEL, choices=TABULAR_PII_DETECTION_MODELS)
|
538 |
|
539 |
+
with gr.Accordion("Anonymisation output format - by default will replace PII with a blank space", open = False):
|
540 |
anon_strat = gr.Radio(choices=["replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely", "hash", "mask"], label="Select an anonymisation method.", value = "redact completely") # , "encrypt", "fake_first_name" are also available, but are not currently included as not that useful in current form
|
541 |
|
542 |
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
|
cdk/cdk_stack.py
CHANGED
@@ -990,6 +990,21 @@ class CdkStack(Stack):
|
|
990 |
"sourceVolume": epheremal_storage_volume_name,
|
991 |
"containerPath": "/tmp/gradio_tmp",
|
992 |
"readOnly": False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
993 |
}
|
994 |
],
|
995 |
"readonlyRootFilesystem": read_only_file_system,
|
|
|
990 |
"sourceVolume": epheremal_storage_volume_name,
|
991 |
"containerPath": "/tmp/gradio_tmp",
|
992 |
"readOnly": False
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"sourceVolume": epheremal_storage_volume_name,
|
996 |
+
"containerPath": "/home/user/.paddlex",
|
997 |
+
"readOnly": False
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"sourceVolume": epheremal_storage_volume_name,
|
1001 |
+
"containerPath": "/home/user/.local/share/spacy/data",
|
1002 |
+
"readOnly": False
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"sourceVolume": epheremal_storage_volume_name,
|
1006 |
+
"containerPath": "/usr/share/tessdata",
|
1007 |
+
"readOnly": False
|
1008 |
}
|
1009 |
],
|
1010 |
"readonlyRootFilesystem": read_only_file_system,
|
index.qmd
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
title: "Home"
|
3 |
---
|
4 |
|
5 |
-
version: 0.
|
6 |
|
7 |
Welcome to the Document Redaction App documentation. This site provides comprehensive documentation for the Document Redaction App.
|
8 |
|
|
|
2 |
title: "Home"
|
3 |
---
|
4 |
|
5 |
+
version: 1.0.0
|
6 |
|
7 |
Welcome to the Document Redaction App documentation. This site provides comprehensive documentation for the Document Redaction App.
|
8 |
|
pyproject.toml
CHANGED
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
4 |
|
5 |
[project]
|
6 |
name = "doc_redaction"
|
7 |
-
version = "0.
|
8 |
description = "Redact PDF/image-based documents, or CSV/XLSX files using a Gradio-based GUI interface"
|
9 |
readme = "README.md"
|
10 |
requires-python = ">=3.10"
|
@@ -23,7 +23,7 @@ dependencies = [
|
|
23 |
"spacy==3.8.7",
|
24 |
# Direct URL dependency for spacy model
|
25 |
"en_core_web_lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.8.0/en_core_web_lg-3.8.0.tar.gz",
|
26 |
-
"gradio==5.
|
27 |
"boto3==1.40.10",
|
28 |
"pyarrow==21.0.0",
|
29 |
"openpyxl==3.1.5",
|
|
|
4 |
|
5 |
[project]
|
6 |
name = "doc_redaction"
|
7 |
+
version = "1.0.0"
|
8 |
description = "Redact PDF/image-based documents, or CSV/XLSX files using a Gradio-based GUI interface"
|
9 |
readme = "README.md"
|
10 |
requires-python = ">=3.10"
|
|
|
23 |
"spacy==3.8.7",
|
24 |
# Direct URL dependency for spacy model
|
25 |
"en_core_web_lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.8.0/en_core_web_lg-3.8.0.tar.gz",
|
26 |
+
"gradio==5.43.1",
|
27 |
"boto3==1.40.10",
|
28 |
"pyarrow==21.0.0",
|
29 |
"openpyxl==3.1.5",
|
requirements.txt
CHANGED
@@ -10,7 +10,7 @@ pandas==2.3.1
|
|
10 |
scikit-learn==1.7.1
|
11 |
spacy==3.8.7
|
12 |
en_core_web_lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.8.0/en_core_web_lg-3.8.0.tar.gz
|
13 |
-
gradio==5.
|
14 |
boto3==1.40.10
|
15 |
pyarrow==21.0.0
|
16 |
openpyxl==3.1.5
|
|
|
10 |
scikit-learn==1.7.1
|
11 |
spacy==3.8.7
|
12 |
en_core_web_lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.8.0/en_core_web_lg-3.8.0.tar.gz
|
13 |
+
gradio==5.43.1
|
14 |
boto3==1.40.10
|
15 |
pyarrow==21.0.0
|
16 |
openpyxl==3.1.5
|
tools/custom_image_analyser_engine.py
CHANGED
@@ -699,7 +699,6 @@ class CustomImageAnalyzerEngine:
|
|
699 |
page_text_mapping = list()
|
700 |
all_text_line_results = list()
|
701 |
comprehend_query_number = 0
|
702 |
-
print("custom_entities:", custom_entities)
|
703 |
|
704 |
if not nlp_analyser:
|
705 |
nlp_analyser = self.analyzer_engine
|
|
|
699 |
page_text_mapping = list()
|
700 |
all_text_line_results = list()
|
701 |
comprehend_query_number = 0
|
|
|
702 |
|
703 |
if not nlp_analyser:
|
704 |
nlp_analyser = self.analyzer_engine
|
tools/data_anonymise.py
CHANGED
@@ -49,7 +49,7 @@ def initial_clean(text:str) -> str:
|
|
49 |
return text
|
50 |
|
51 |
def process_recognizer_result(result:RecognizerResult, recognizer_result:RecognizerResult, data_row:int, dictionary_key:int, df_dict:Dict[str, List[Any]], keys_to_keep:List[str]) -> List[str]:
|
52 |
-
output =
|
53 |
|
54 |
if hasattr(result, 'value'):
|
55 |
text = result.value[data_row]
|
@@ -89,7 +89,7 @@ def generate_decision_process_output(analyzer_results: List[DictAnalyzerResult],
|
|
89 |
Returns:
|
90 |
str: A string containing the detailed decision process output.
|
91 |
"""
|
92 |
-
decision_process_output =
|
93 |
keys_to_keep = ['entity_type', 'start', 'end']
|
94 |
|
95 |
# Run through each column to analyse for PII
|
@@ -124,16 +124,10 @@ def anon_consistent_names(df:pd.DataFrame) -> pd.DataFrame:
|
|
124 |
analyzer_results = batch_analyzer.analyze_dict(df_dict, language=DEFAULT_LANGUAGE)
|
125 |
analyzer_results = list(analyzer_results)
|
126 |
|
127 |
-
# + tags=[]
|
128 |
text = analyzer_results[3].value
|
129 |
|
130 |
-
# + tags=[]
|
131 |
recognizer_result = str(analyzer_results[3].recognizer_results)
|
132 |
|
133 |
-
# + tags=[]
|
134 |
-
recognizer_result
|
135 |
-
|
136 |
-
# + tags=[]
|
137 |
data_str = recognizer_result # abbreviated for brevity
|
138 |
|
139 |
# Adjusting the parse_dict function to handle trailing ']'
|
@@ -156,7 +150,7 @@ def anon_consistent_names(df:pd.DataFrame) -> pd.DataFrame:
|
|
156 |
|
157 |
# Re-running the improved processing code
|
158 |
|
159 |
-
result =
|
160 |
|
161 |
for lst_str in list_strs:
|
162 |
# Splitting each list string into individual dictionary strings
|
@@ -167,41 +161,30 @@ def anon_consistent_names(df:pd.DataFrame) -> pd.DataFrame:
|
|
167 |
dicts = [parse_dict(d) for d in dict_strs]
|
168 |
result.append(dicts)
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
# + tags=[]
|
173 |
-
names = []
|
174 |
|
175 |
for idx, paragraph in enumerate(text):
|
176 |
-
paragraph_texts =
|
177 |
for dictionary in result[idx]:
|
178 |
if dictionary['type'] == 'PERSON':
|
179 |
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']])
|
180 |
names.append(paragraph_texts)
|
181 |
|
182 |
-
# + tags=[]
|
183 |
# Flatten the list of lists and extract unique names
|
184 |
unique_names = list(set(name for sublist in names for name in sublist))
|
185 |
|
186 |
-
# + tags=[]
|
187 |
fake_names = pd.Series(unique_names).apply(fake_first_name)
|
188 |
|
189 |
-
# + tags=[]
|
190 |
mapping_df = pd.DataFrame(data={"Unique names":unique_names,
|
191 |
"Fake names": fake_names})
|
192 |
|
193 |
-
# + tags=[]
|
194 |
-
# Convert mapping dataframe to dictionary
|
195 |
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match
|
196 |
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])}
|
197 |
|
198 |
-
# + tags=[]
|
199 |
name_map
|
200 |
|
201 |
-
# + tags=[]
|
202 |
scrubbed_df_consistent_names = df.replace(name_map, regex = True)
|
203 |
|
204 |
-
# + tags=[]
|
205 |
scrubbed_df_consistent_names
|
206 |
|
207 |
return scrubbed_df_consistent_names
|
@@ -230,8 +213,8 @@ def handle_docx_anonymisation(
|
|
230 |
|
231 |
# 1. Load the document and extract text elements
|
232 |
doc = docx.Document(file_path)
|
233 |
-
text_elements =
|
234 |
-
original_texts =
|
235 |
|
236 |
# Extract from paragraphs
|
237 |
for para in doc.paragraphs:
|
@@ -307,16 +290,16 @@ def anonymise_files_with_open_text(file_paths: List[str],
|
|
307 |
chosen_redact_entities: List[str],
|
308 |
in_allow_list: List[str] = None,
|
309 |
latest_file_completed: int = 0,
|
310 |
-
out_message: list =
|
311 |
-
out_file_paths: list =
|
312 |
-
log_files_output_paths: list =
|
313 |
-
in_excel_sheets: list =
|
314 |
first_loop_state: bool = False,
|
315 |
output_folder: str = OUTPUT_FOLDER,
|
316 |
-
in_deny_list:list[str]=
|
317 |
max_fuzzy_spelling_mistakes_num:int=0,
|
318 |
pii_identification_method:str="Local",
|
319 |
-
chosen_redact_comprehend_entities:List[str]=
|
320 |
comprehend_query_number:int=0,
|
321 |
aws_access_key_textbox:str='',
|
322 |
aws_secret_key_textbox:str='',
|
@@ -367,8 +350,8 @@ def anonymise_files_with_open_text(file_paths: List[str],
|
|
367 |
# If this is the first time around, set variables to 0/blank
|
368 |
if first_loop_state==True:
|
369 |
latest_file_completed = 0
|
370 |
-
out_message =
|
371 |
-
out_file_paths =
|
372 |
|
373 |
# Load file
|
374 |
# If out message or out_file_paths are blank, change to a list so it can be appended to
|
@@ -378,23 +361,23 @@ def anonymise_files_with_open_text(file_paths: List[str],
|
|
378 |
#print("log_files_output_paths:",log_files_output_paths)
|
379 |
|
380 |
if isinstance(log_files_output_paths, str):
|
381 |
-
log_files_output_paths =
|
382 |
|
383 |
if not out_file_paths:
|
384 |
-
out_file_paths =
|
385 |
|
386 |
if isinstance(in_allow_list, list):
|
387 |
if in_allow_list:
|
388 |
in_allow_list_flat = in_allow_list
|
389 |
else:
|
390 |
-
in_allow_list_flat =
|
391 |
elif isinstance(in_allow_list, pd.DataFrame):
|
392 |
if not in_allow_list.empty:
|
393 |
in_allow_list_flat = list(in_allow_list.iloc[:, 0].unique())
|
394 |
else:
|
395 |
-
in_allow_list_flat =
|
396 |
else:
|
397 |
-
in_allow_list_flat =
|
398 |
|
399 |
anon_df = pd.DataFrame()
|
400 |
|
@@ -520,6 +503,9 @@ def anonymise_files_with_open_text(file_paths: List[str],
|
|
520 |
|
521 |
actual_time_taken_number += out_time_float
|
522 |
|
|
|
|
|
|
|
523 |
out_message.append("Anonymisation of file '" + out_file_part + "' successfully completed in")
|
524 |
|
525 |
out_message_out = '\n'.join(out_message)
|
@@ -549,11 +535,11 @@ def tabular_anonymise_wrapper_func(
|
|
549 |
file_type: str,
|
550 |
anon_xlsx_export_file_name: str,
|
551 |
log_files_output_paths: List[str],
|
552 |
-
in_deny_list: List[str]=
|
553 |
max_fuzzy_spelling_mistakes_num:int=0,
|
554 |
pii_identification_method:str="Local",
|
555 |
comprehend_language: Optional[str] = None,
|
556 |
-
chosen_redact_comprehend_entities:List[str]=
|
557 |
comprehend_query_number:int=0,
|
558 |
comprehend_client:botocore.client.BaseClient="",
|
559 |
nlp_analyser: AnalyzerEngine = nlp_analyser,
|
@@ -599,7 +585,7 @@ def tabular_anonymise_wrapper_func(
|
|
599 |
Returns:
|
600 |
A list containing the common strings.
|
601 |
"""
|
602 |
-
common_strings =
|
603 |
for string in list1:
|
604 |
if string in list2:
|
605 |
common_strings.append(string)
|
@@ -615,7 +601,9 @@ def tabular_anonymise_wrapper_func(
|
|
615 |
|
616 |
if any_cols_found == False:
|
617 |
out_message = "No chosen columns found in dataframe: " + out_file_part
|
|
|
618 |
print(out_message)
|
|
|
619 |
else:
|
620 |
chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order)
|
621 |
|
@@ -686,11 +674,11 @@ def anonymise_script(df:pd.DataFrame,
|
|
686 |
anon_strat:str,
|
687 |
language:str,
|
688 |
chosen_redact_entities:List[str],
|
689 |
-
in_allow_list:List[str]=
|
690 |
-
in_deny_list:List[str]=
|
691 |
max_fuzzy_spelling_mistakes_num:int=0,
|
692 |
pii_identification_method:str="Local",
|
693 |
-
chosen_redact_comprehend_entities:List[str]=
|
694 |
comprehend_query_number:int=0,
|
695 |
comprehend_client:botocore.client.BaseClient="",
|
696 |
custom_entities:List[str]=custom_entities,
|
@@ -714,18 +702,20 @@ def anonymise_script(df:pd.DataFrame,
|
|
714 |
if in_allow_list:
|
715 |
in_allow_list_flat = in_allow_list
|
716 |
else:
|
717 |
-
in_allow_list_flat =
|
718 |
elif isinstance(in_allow_list, pd.DataFrame):
|
719 |
if not in_allow_list.empty:
|
720 |
in_allow_list_flat = list(in_allow_list.iloc[:, 0].unique())
|
721 |
else:
|
722 |
-
in_allow_list_flat =
|
723 |
else:
|
724 |
-
in_allow_list_flat =
|
725 |
|
726 |
### Language check - check if selected language packs exist
|
727 |
try:
|
728 |
-
|
|
|
|
|
729 |
load_spacy_model(language)
|
730 |
|
731 |
except Exception as e:
|
@@ -748,7 +738,7 @@ def anonymise_script(df:pd.DataFrame,
|
|
748 |
in_deny_list = in_deny_list.iloc[:, 0].tolist()
|
749 |
else:
|
750 |
# Handle the case where the DataFrame is empty
|
751 |
-
in_deny_list =
|
752 |
|
753 |
# Sort the strings in order from the longest string to the shortest
|
754 |
in_deny_list = sorted(in_deny_list, key=len, reverse=True)
|
@@ -766,7 +756,7 @@ def anonymise_script(df:pd.DataFrame,
|
|
766 |
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser)
|
767 |
anonymizer = AnonymizerEngine()#conflict_resolution=ConflictResolutionStrategy.MERGE_SIMILAR_OR_CONTAINED)
|
768 |
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer)
|
769 |
-
analyzer_results =
|
770 |
|
771 |
# Use provided comprehend language or fall back to main language
|
772 |
language = language
|
|
|
49 |
return text
|
50 |
|
51 |
def process_recognizer_result(result:RecognizerResult, recognizer_result:RecognizerResult, data_row:int, dictionary_key:int, df_dict:Dict[str, List[Any]], keys_to_keep:List[str]) -> List[str]:
|
52 |
+
output = list()
|
53 |
|
54 |
if hasattr(result, 'value'):
|
55 |
text = result.value[data_row]
|
|
|
89 |
Returns:
|
90 |
str: A string containing the detailed decision process output.
|
91 |
"""
|
92 |
+
decision_process_output = list()
|
93 |
keys_to_keep = ['entity_type', 'start', 'end']
|
94 |
|
95 |
# Run through each column to analyse for PII
|
|
|
124 |
analyzer_results = batch_analyzer.analyze_dict(df_dict, language=DEFAULT_LANGUAGE)
|
125 |
analyzer_results = list(analyzer_results)
|
126 |
|
|
|
127 |
text = analyzer_results[3].value
|
128 |
|
|
|
129 |
recognizer_result = str(analyzer_results[3].recognizer_results)
|
130 |
|
|
|
|
|
|
|
|
|
131 |
data_str = recognizer_result # abbreviated for brevity
|
132 |
|
133 |
# Adjusting the parse_dict function to handle trailing ']'
|
|
|
150 |
|
151 |
# Re-running the improved processing code
|
152 |
|
153 |
+
result = list()
|
154 |
|
155 |
for lst_str in list_strs:
|
156 |
# Splitting each list string into individual dictionary strings
|
|
|
161 |
dicts = [parse_dict(d) for d in dict_strs]
|
162 |
result.append(dicts)
|
163 |
|
164 |
+
names = list()
|
|
|
|
|
|
|
165 |
|
166 |
for idx, paragraph in enumerate(text):
|
167 |
+
paragraph_texts = list()
|
168 |
for dictionary in result[idx]:
|
169 |
if dictionary['type'] == 'PERSON':
|
170 |
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']])
|
171 |
names.append(paragraph_texts)
|
172 |
|
|
|
173 |
# Flatten the list of lists and extract unique names
|
174 |
unique_names = list(set(name for sublist in names for name in sublist))
|
175 |
|
|
|
176 |
fake_names = pd.Series(unique_names).apply(fake_first_name)
|
177 |
|
|
|
178 |
mapping_df = pd.DataFrame(data={"Unique names":unique_names,
|
179 |
"Fake names": fake_names})
|
180 |
|
|
|
|
|
181 |
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match
|
182 |
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])}
|
183 |
|
|
|
184 |
name_map
|
185 |
|
|
|
186 |
scrubbed_df_consistent_names = df.replace(name_map, regex = True)
|
187 |
|
|
|
188 |
scrubbed_df_consistent_names
|
189 |
|
190 |
return scrubbed_df_consistent_names
|
|
|
213 |
|
214 |
# 1. Load the document and extract text elements
|
215 |
doc = docx.Document(file_path)
|
216 |
+
text_elements = list() # This will store the actual docx objects (paragraphs, cells)
|
217 |
+
original_texts = list() # This will store the text from those objects
|
218 |
|
219 |
# Extract from paragraphs
|
220 |
for para in doc.paragraphs:
|
|
|
290 |
chosen_redact_entities: List[str],
|
291 |
in_allow_list: List[str] = None,
|
292 |
latest_file_completed: int = 0,
|
293 |
+
out_message: list = list(),
|
294 |
+
out_file_paths: list = list(),
|
295 |
+
log_files_output_paths: list = list(),
|
296 |
+
in_excel_sheets: list = list(),
|
297 |
first_loop_state: bool = False,
|
298 |
output_folder: str = OUTPUT_FOLDER,
|
299 |
+
in_deny_list:list[str]=list(),
|
300 |
max_fuzzy_spelling_mistakes_num:int=0,
|
301 |
pii_identification_method:str="Local",
|
302 |
+
chosen_redact_comprehend_entities:List[str]=list(),
|
303 |
comprehend_query_number:int=0,
|
304 |
aws_access_key_textbox:str='',
|
305 |
aws_secret_key_textbox:str='',
|
|
|
350 |
# If this is the first time around, set variables to 0/blank
|
351 |
if first_loop_state==True:
|
352 |
latest_file_completed = 0
|
353 |
+
out_message = list()
|
354 |
+
out_file_paths = list()
|
355 |
|
356 |
# Load file
|
357 |
# If out message or out_file_paths are blank, change to a list so it can be appended to
|
|
|
361 |
#print("log_files_output_paths:",log_files_output_paths)
|
362 |
|
363 |
if isinstance(log_files_output_paths, str):
|
364 |
+
log_files_output_paths = list()
|
365 |
|
366 |
if not out_file_paths:
|
367 |
+
out_file_paths = list()
|
368 |
|
369 |
if isinstance(in_allow_list, list):
|
370 |
if in_allow_list:
|
371 |
in_allow_list_flat = in_allow_list
|
372 |
else:
|
373 |
+
in_allow_list_flat = list()
|
374 |
elif isinstance(in_allow_list, pd.DataFrame):
|
375 |
if not in_allow_list.empty:
|
376 |
in_allow_list_flat = list(in_allow_list.iloc[:, 0].unique())
|
377 |
else:
|
378 |
+
in_allow_list_flat = list()
|
379 |
else:
|
380 |
+
in_allow_list_flat = list()
|
381 |
|
382 |
anon_df = pd.DataFrame()
|
383 |
|
|
|
503 |
|
504 |
actual_time_taken_number += out_time_float
|
505 |
|
506 |
+
if isinstance(out_message, str):
|
507 |
+
out_message = [out_message]
|
508 |
+
|
509 |
out_message.append("Anonymisation of file '" + out_file_part + "' successfully completed in")
|
510 |
|
511 |
out_message_out = '\n'.join(out_message)
|
|
|
535 |
file_type: str,
|
536 |
anon_xlsx_export_file_name: str,
|
537 |
log_files_output_paths: List[str],
|
538 |
+
in_deny_list: List[str]=list(),
|
539 |
max_fuzzy_spelling_mistakes_num:int=0,
|
540 |
pii_identification_method:str="Local",
|
541 |
comprehend_language: Optional[str] = None,
|
542 |
+
chosen_redact_comprehend_entities:List[str]=list(),
|
543 |
comprehend_query_number:int=0,
|
544 |
comprehend_client:botocore.client.BaseClient="",
|
545 |
nlp_analyser: AnalyzerEngine = nlp_analyser,
|
|
|
585 |
Returns:
|
586 |
A list containing the common strings.
|
587 |
"""
|
588 |
+
common_strings = list()
|
589 |
for string in list1:
|
590 |
if string in list2:
|
591 |
common_strings.append(string)
|
|
|
601 |
|
602 |
if any_cols_found == False:
|
603 |
out_message = "No chosen columns found in dataframe: " + out_file_part
|
604 |
+
key_string = ""
|
605 |
print(out_message)
|
606 |
+
return out_file_paths, out_message, key_string, log_files_output_paths
|
607 |
else:
|
608 |
chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order)
|
609 |
|
|
|
674 |
anon_strat:str,
|
675 |
language:str,
|
676 |
chosen_redact_entities:List[str],
|
677 |
+
in_allow_list:List[str]=list(),
|
678 |
+
in_deny_list:List[str]=list(),
|
679 |
max_fuzzy_spelling_mistakes_num:int=0,
|
680 |
pii_identification_method:str="Local",
|
681 |
+
chosen_redact_comprehend_entities:List[str]=list(),
|
682 |
comprehend_query_number:int=0,
|
683 |
comprehend_client:botocore.client.BaseClient="",
|
684 |
custom_entities:List[str]=custom_entities,
|
|
|
702 |
if in_allow_list:
|
703 |
in_allow_list_flat = in_allow_list
|
704 |
else:
|
705 |
+
in_allow_list_flat = list()
|
706 |
elif isinstance(in_allow_list, pd.DataFrame):
|
707 |
if not in_allow_list.empty:
|
708 |
in_allow_list_flat = list(in_allow_list.iloc[:, 0].unique())
|
709 |
else:
|
710 |
+
in_allow_list_flat = list()
|
711 |
else:
|
712 |
+
in_allow_list_flat = list()
|
713 |
|
714 |
### Language check - check if selected language packs exist
|
715 |
try:
|
716 |
+
if language != "en":
|
717 |
+
progress(0.1, desc=f"Loading SpaCy model for {language}")
|
718 |
+
|
719 |
load_spacy_model(language)
|
720 |
|
721 |
except Exception as e:
|
|
|
738 |
in_deny_list = in_deny_list.iloc[:, 0].tolist()
|
739 |
else:
|
740 |
# Handle the case where the DataFrame is empty
|
741 |
+
in_deny_list = list() # or some default value
|
742 |
|
743 |
# Sort the strings in order from the longest string to the shortest
|
744 |
in_deny_list = sorted(in_deny_list, key=len, reverse=True)
|
|
|
756 |
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser)
|
757 |
anonymizer = AnonymizerEngine()#conflict_resolution=ConflictResolutionStrategy.MERGE_SIMILAR_OR_CONTAINED)
|
758 |
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer)
|
759 |
+
analyzer_results = list()
|
760 |
|
761 |
# Use provided comprehend language or fall back to main language
|
762 |
language = language
|
tools/redaction_review.py
CHANGED
@@ -615,7 +615,7 @@ def create_annotation_objects_from_filtered_ocr_results_with_words(
|
|
615 |
# Now, when we group, we use `sort=False`. This tells groupby to respect the
|
616 |
# DataFrame's current order, which we have just manually set. This is slightly
|
617 |
# more efficient than letting it sort again.
|
618 |
-
for image_path, group in merged_df.groupby('image', sort=False):
|
619 |
# The progress.tqdm wrapper can be added back around the groupby object as you had it.
|
620 |
# for image_path, group in progress.tqdm(merged_df.groupby('image', sort=False), ...):
|
621 |
|
|
|
615 |
# Now, when we group, we use `sort=False`. This tells groupby to respect the
|
616 |
# DataFrame's current order, which we have just manually set. This is slightly
|
617 |
# more efficient than letting it sort again.
|
618 |
+
for image_path, group in merged_df.groupby('image', sort=False, observed=False):
|
619 |
# The progress.tqdm wrapper can be added back around the groupby object as you had it.
|
620 |
# for image_path, group in progress.tqdm(merged_df.groupby('image', sort=False), ...):
|
621 |
|