import gradio as gr
# Sample data for demonstration
perception_papers = [
{
"title": "CoSDH: Communication-Efficient Collaborative Perception",
"venue": "CVPR 2025",
"description": "Novel approach for efficient collaborative perception using supply-demand awareness.",
"link": "https://arxiv.org/abs/2503.03430"
},
{
"title": "V2X-R: Cooperative LiDAR-4D Radar Fusion",
"venue": "CVPR 2025",
"description": "Cooperative fusion of LiDAR and 4D radar sensors for enhanced 3D object detection.",
"link": "https://arxiv.org/abs/2411.08402"
},
{
"title": "Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps",
"venue": "NeurIPS 2022",
"description": "Groundbreaking work on efficient collaborative perception using spatial confidence maps.",
"link": "https://openreview.net/forum?id=dLL4KXzKUpS"
},
{
"title": "STAMP: Scalable Task-Agnostic Collaborative Perception",
"venue": "ICLR 2025",
"description": "Framework for scalable collaborative perception that is both task and model agnostic.",
"link": "https://openreview.net/forum?id=8NdNniulYE"
},
{
"title": "CoBEVFlow: Robust Asynchronous Collaborative 3D Detection",
"venue": "NeurIPS 2023",
"description": "Handles temporal asynchrony in collaborative perception using bird's eye view flow.",
"link": "https://openreview.net/forum?id=UHIDdtxmVS"
}
]
datasets_data = [
["DAIR-V2X", "2022", "Real-world", "V2I", "71K frames", "3D boxes, Infrastructure"],
["V2V4Real", "2023", "Real-world", "V2V", "20K frames", "Real V2V, Highway"],
["TUMTraf-V2X", "2024", "Real-world", "V2X", "2K sequences", "Dense labels, Urban"],
["OPV2V", "2022", "Simulation", "V2V", "Large-scale", "CARLA, Multi-agent"],
["V2X-Sim", "2021", "Simulation", "Multi", "Scalable", "Multi-agent, Collaborative"],
["DOLPHINS", "2024", "Simulation", "UAV", "UAV swarms", "AirSim, Multi-UAV"]
]
def create_paper_card(paper):
return f"""
{paper['venue']}
{paper['title']}
{paper['description']}
📄 Read Paper
"""
# Custom CSS
custom_css = """
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 40px 20px;
border-radius: 15px;
margin-bottom: 30px;
}
"""
# Create the interface
with gr.Blocks(
title="🤖 Awesome Multi-Agent Collaborative Perception",
theme=gr.themes.Soft(),
css=custom_css
) as demo:
# Header
gr.HTML("""
🤖 Awesome Multi-Agent Collaborative Perception
Explore cutting-edge resources for Multi-Agent Collaborative Perception, Prediction, and Planning
""")
# Main navigation tabs
with gr.Tabs():
with gr.Tab("🔍 Perception"):
gr.Markdown("## Multi-Agent Collaborative Perception Papers")
gr.Markdown("*Latest research in collaborative sensing, 3D object detection, and V2X communication*")
# Create paper cards
papers_html = "".join([create_paper_card(paper) for paper in perception_papers])
gr.HTML(papers_html)
gr.Markdown("""
### 🔄 Key Communication Strategies:
- **Early Fusion**: Raw sensor data sharing
- **Late Fusion**: Detection-level information exchange
- **Intermediate Fusion**: Feature-level collaboration
- **Selective Communication**: Confidence-based data sharing
""")
with gr.Tab("📊 Datasets"):
gr.Markdown("## Datasets & Benchmarks")
gr.Markdown("*Comprehensive collection of real-world and simulation datasets*")
gr.Dataframe(
value=datasets_data,
headers=["Dataset", "Year", "Type", "Agents", "Size", "Features"],
datatype=["str", "str", "str", "str", "str", "str"],
interactive=False
)
gr.Markdown("""
### 🌟 Notable Features:
- **DAIR-V2X**: First real-world V2I collaborative perception dataset with infrastructure sensors
- **V2V4Real**: Real vehicle-to-vehicle communication dataset collected on highways
- **TUMTraf-V2X**: Dense annotations for urban collaborative perception scenarios
- **OPV2V**: Large-scale simulation benchmark built on CARLA platform
- **V2X-Sim**: Comprehensive multi-agent simulation with customizable scenarios
""")
with gr.Tab("📍 Tracking"):
gr.Markdown("## Multi-Object Tracking & State Estimation")
gr.Markdown("*Collaborative tracking across distributed agents with uncertainty quantification*")
gr.HTML("""
MOT-CUP
Multi-Object Tracking with Conformal Uncertainty Propagation
📄 Paper
DMSTrack
Probabilistic 3D Multi-Object Cooperative Tracking (ICRA 2024)
📄 Paper
CoDynTrust
Dynamic Feature Trust for Robust Asynchronous Collaborative Perception (ICRA 2025)
📄 Paper
""")
gr.Markdown("""
### 🎯 Key Challenges:
- **Temporal Asynchrony**: Handling different sensor timestamps and communication delays
- **Uncertainty Quantification**: Reliable confidence estimation across multiple agents
- **Data Association**: Multi-agent correspondence and track management
- **Scalability**: Maintaining performance with increasing number of agents
""")
with gr.Tab("🔮 Prediction"):
gr.Markdown("## Trajectory Forecasting & Motion Prediction")
gr.Markdown("*Cooperative prediction for autonomous systems and multi-agent coordination*")
gr.HTML("""
V2X-Graph
Learning Cooperative Trajectory Representations (NeurIPS 2024)
📄 Paper
Co-MTP
Cooperative Multi-Temporal Prediction Framework (ICRA 2025)
📄 Paper
""")
gr.HTML("""
🧠 Key Approaches:
- Graph Neural Networks: Modeling agent interactions and social behaviors
- Transformer Architectures: Attention-based prediction with long-range dependencies
- Multi-Modal Fusion: Combining LiDAR, camera, and communication data
- Uncertainty Quantification: Reliable confidence estimation for safety-critical applications
""")
with gr.Tab("⚙️ Methods"):
gr.Markdown("## Methods & Techniques")
gr.Markdown("*Core methodologies for communication, robustness, and learning in collaborative systems*")
with gr.Row():
with gr.Column():
gr.Markdown("""
### 📡 Communication Strategies
- **Bandwidth Optimization**: Compression and selective sharing
- **Protocol Design**: V2V, V2I, V2X communication standards
- **Network Topology**: Centralized vs. distributed architectures
- **Quality of Service**: Latency and reliability management
""")
with gr.Column():
gr.Markdown("""
### 🛡️ Robustness Approaches
- **Byzantine Fault Tolerance**: Handling adversarial agents
- **Uncertainty Handling**: Robust fusion under noise
- **Privacy Preservation**: Secure multi-party computation
- **Malicious Agent Detection**: CP-Guard framework (AAAI 2025)
""")
gr.HTML("""
🧠 Learning Paradigms
• Federated Learning: Distributed model training
• Transfer Learning: Cross-domain adaptation
• Meta-Learning: Quick adaptation to new scenarios
• Heterogeneous Learning: HEAL framework (ICLR 2024)
""")
with gr.Tab("🏛️ Conferences"):
gr.Markdown("## Top Venues & Publication Trends")
gr.Markdown("*Premier conferences and emerging research directions in collaborative perception*")
conference_data = [
["CVPR 2025", "5+", "End-to-end systems, robustness"],
["ICLR 2025", "3+", "Learning representations, scalability"],
["AAAI 2025", "4+", "AI applications, defense mechanisms"],
["ICRA 2025", "6+", "Robotics applications, real-world deployment"],
["NeurIPS 2024", "2+", "Theoretical foundations, novel architectures"]
]
gr.Dataframe(
value=conference_data,
headers=["Conference", "Papers", "Focus Areas"],
datatype=["str", "str", "str"],
interactive=False
)
gr.Markdown("""
### 📊 Research Trends (2024-2025):
- **Communication Efficiency**: 40% increase in bandwidth-aware methods
- **Robustness & Security**: Emerging focus on adversarial robustness (15+ papers)
- **Real-World Deployment**: Growing emphasis on practical systems and field tests
- **Heterogeneous Systems**: Multi-modal and multi-agent diversity becoming standard
- **End-to-End Learning**: Integration of perception, prediction, and planning
""")
# Footer
gr.HTML("""
🤝 Contributing
We welcome contributions! Please submit papers, datasets, and code repositories via GitHub.
Made with ❤️ for the Collaborative Perception Community
""")
if __name__ == "__main__":
demo.launch()