File size: 8,804 Bytes
5fc4576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr

# Sample data for demonstration
perception_papers = [
    {
        "title": "CoSDH: Communication-Efficient Collaborative Perception",
        "venue": "CVPR 2025",
        "description": "Novel approach for efficient collaborative perception using supply-demand awareness.",
        "link": "https://arxiv.org/abs/2503.03430"
    },
    {
        "title": "V2X-R: Cooperative LiDAR-4D Radar Fusion",
        "venue": "CVPR 2025", 
        "description": "Cooperative fusion of LiDAR and 4D radar sensors for enhanced 3D object detection.",
        "link": "https://arxiv.org/abs/2411.08402"
    },
    {
        "title": "Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps",
        "venue": "NeurIPS 2022",
        "description": "Groundbreaking work on efficient collaborative perception using spatial confidence maps.",
        "link": "https://openreview.net/forum?id=dLL4KXzKUpS"
    }
]

datasets_data = [
    ["DAIR-V2X", "2022", "Real-world", "V2I", "71K frames", "3D boxes, Infrastructure"],
    ["V2V4Real", "2023", "Real-world", "V2V", "20K frames", "Real V2V, Highway"],
    ["OPV2V", "2022", "Simulation", "V2V", "Large-scale", "CARLA, Multi-agent"],
    ["V2X-Sim", "2021", "Simulation", "Multi", "Scalable", "Multi-agent, Collaborative"]
]

def create_paper_card(paper):
    return f"""
    <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; margin: 10px 0; background: white;">
        <div style="background: #667eea; color: white; padding: 5px 10px; border-radius: 15px; display: inline-block; font-size: 0.8em; margin-bottom: 10px;">
            {paper['venue']}
        </div>
        <h3 style="color: #333; margin: 10px 0;">{paper['title']}</h3>
        <p style="color: #666; line-height: 1.5; margin-bottom: 15px;">{paper['description']}</p>
        <a href="{paper['link']}" target="_blank" style="background: #667eea; color: white; padding: 8px 15px; border-radius: 5px; text-decoration: none; font-size: 0.9em;">
            ๐Ÿ“„ Read Paper
        </a>
    </div>
    """

# Custom CSS
custom_css = """
.gradio-container {
    max-width: 1200px !important;
}
.main-header {
    text-align: center;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    color: white;
    padding: 40px 20px;
    border-radius: 15px;
    margin-bottom: 30px;
}
.stats-grid {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
    gap: 20px;
    margin: 20px 0;
}
.stat-card {
    background: rgba(255,255,255,0.1);
    padding: 20px;
    border-radius: 10px;
    text-align: center;
}
"""

# Create the interface
with gr.Blocks(
    title="๐Ÿค– Awesome Multi-Agent Collaborative Perception",
    theme=gr.themes.Soft(),
    css=custom_css
) as demo:
    
    # Header
    gr.HTML("""
    <div class="main-header">
        <h1 style="font-size: 2.5rem; margin-bottom: 10px;">๐Ÿค– Awesome Multi-Agent Collaborative Perception</h1>
        <p style="font-size: 1.2rem; opacity: 0.9;">Explore cutting-edge resources for Multi-Agent Collaborative Perception, Prediction, and Planning</p>
        <div style="display: flex; justify-content: center; gap: 30px; margin-top: 20px; flex-wrap: wrap;">
            <div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
                <div style="font-size: 1.5rem; font-weight: bold;">200+</div>
                <div>Papers</div>
            </div>
            <div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
                <div style="font-size: 1.5rem; font-weight: bold;">25+</div>
                <div>Datasets</div>
            </div>
            <div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
                <div style="font-size: 1.5rem; font-weight: bold;">50+</div>
                <div>Code Repos</div>
            </div>
        </div>
    </div>
    """)
    
    # Main navigation tabs
    with gr.Tabs():
        
        with gr.Tab("๐Ÿ” Perception"):
            gr.Markdown("## Multi-Agent Collaborative Perception Papers")
            
            # Create paper cards
            papers_html = "".join([create_paper_card(paper) for paper in perception_papers])
            gr.HTML(papers_html)
            
        with gr.Tab("๐Ÿ“Š Datasets"):
            gr.Markdown("## Datasets & Benchmarks")
            
            gr.Dataframe(
                value=datasets_data,
                headers=["Dataset", "Year", "Type", "Agents", "Size", "Features"],
                datatype=["str", "str", "str", "str", "str", "str"],
                interactive=False
            )
            
            gr.Markdown("""
            ### Notable Datasets:
            - **DAIR-V2X**: First real-world V2I collaborative perception dataset
            - **V2V4Real**: Real vehicle-to-vehicle communication dataset  
            - **OPV2V**: Large-scale simulation benchmark in CARLA
            - **V2X-Sim**: Comprehensive multi-agent simulation platform
            """)
            
        with gr.Tab("๐Ÿ“ Tracking"):
            gr.Markdown("## Multi-Object Tracking & State Estimation")
            
            gr.HTML("""
            <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px;">
                <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white;">
                    <h3>MOT-CUP</h3>
                    <p>Multi-Object Tracking with Conformal Uncertainty Propagation</p>
                    <a href="https://arxiv.org/abs/2303.14346" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
                </div>
                <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white;">
                    <h3>DMSTrack</h3>
                    <p>Probabilistic 3D Multi-Object Cooperative Tracking (ICRA 2024)</p>
                    <a href="https://arxiv.org/abs/2309.14655" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
                </div>
            </div>
            """)
            
        with gr.Tab("๐Ÿ”ฎ Prediction"):
            gr.Markdown("## Trajectory Forecasting & Motion Prediction")
            
            gr.HTML("""
            <div style="background: #f8f9fa; border-radius: 10px; padding: 20px; margin: 20px 0;">
                <h3>๐Ÿง  Key Approaches:</h3>
                <ul style="line-height: 1.8;">
                    <li><strong>Graph Neural Networks</strong>: Modeling agent interactions</li>
                    <li><strong>Transformer Architectures</strong>: Attention-based prediction</li>
                    <li><strong>Multi-Modal Fusion</strong>: Combining different sensor modalities</li>
                    <li><strong>Uncertainty Quantification</strong>: Reliable confidence estimation</li>
                </ul>
            </div>
            """)
            
        with gr.Tab("๐Ÿ›๏ธ Conferences"):
            gr.Markdown("## Top Venues & Publication Trends")
            
            conference_data = [
                ["CVPR 2025", "5+", "End-to-end systems, robustness"],
                ["ICLR 2025", "3+", "Learning representations, scalability"], 
                ["AAAI 2025", "4+", "AI applications, defense mechanisms"],
                ["ICRA 2025", "6+", "Robotics applications, real-world deployment"],
                ["NeurIPS 2024", "2+", "Theoretical foundations, novel architectures"]
            ]
            
            gr.Dataframe(
                value=conference_data,
                headers=["Conference", "Papers", "Focus Areas"],
                datatype=["str", "str", "str"],
                interactive=False
            )
    
    # Footer
    gr.HTML("""
    <div style="text-align: center; margin-top: 40px; padding: 30px; background: #f8f9fa; border-radius: 10px;">
        <h3>๐Ÿค Contributing</h3>
        <p>We welcome contributions! Please submit papers, datasets, and code repositories via GitHub.</p>
        <div style="margin-top: 20px;">
            <a href="https://github.com/your-username/awesome-multi-agent-collaborative-perception" target="_blank" 
               style="background: #667eea; color: white; padding: 10px 20px; border-radius: 5px; text-decoration: none; margin: 5px;">
                ๐Ÿ“š GitHub Repository
            </a>
            <a href="https://huggingface.co/spaces/your-username/awesome-multi-agent-collaborative-perception" target="_blank"
               style="background: #ff6b6b; color: white; padding: 10px 20px; border-radius: 5px; text-decoration: none; margin: 5px;">
                ๐Ÿค— Hugging Face Space
            </a>
        </div>
    </div>
    """)

if __name__ == "__main__":
    demo.launch()