sayyid14 commited on
Commit
8e5d526
·
verified ·
1 Parent(s): 9df610a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -59
app.py CHANGED
@@ -1,63 +1,75 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ from transformers import (AutoModelForCausalLM,
2
+ AutoTokenizer,
3
+ GenerationConfig)
4
+ from peft import PeftModel
5
  import gradio as gr
6
+
7
+ # Memuat model
8
+ base_model = AutoModelForCausalLM.from_pretrained(
9
+ "BioMistral/BioMistral-7B",
10
+ load_in_8bit=True,
11
+ device_map="auto"
12
+ )
13
+ model = PeftModel.from_pretrained(base_model, "sayyid14/BioMistralCancer5epoch")
14
+
15
+ generation_config = GenerationConfig(
16
+ do_sample=False,
17
+ num_beams=4,
18
+ repetition_penalty=1.15,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  )
20
 
21
+ # Load tokenizer
22
+ tokenizer = AutoTokenizer.from_pretrained("BioMistral/BioMistral-7B", trust_remote_code=True)
23
+ tokenizer.pad_token = tokenizer.eos_token
24
+
25
+ # Fungsi respons
26
+ def chatbot_response(user_input):
27
+ PROMPT = f"""Below is a question about cancer. Please answer this question correctly. If you don't know the answer just say that you don't know and don't share false information.
28
+ ### Question:
29
+ {user_input}
30
+ ### Answer:"""
31
+
32
+ inputs = tokenizer(PROMPT, return_tensors="pt")
33
+ input_ids = inputs["input_ids"]
34
+
35
+ print("Generating...")
36
+ generation_output = model.generate(
37
+ input_ids=input_ids,
38
+ generation_config=generation_config,
39
+ return_dict_in_generate=True,
40
+ max_new_tokens=100,
41
+ pad_token_id=tokenizer.eos_token_id,
42
+ eos_token_id=tokenizer.eos_token_id
43
+ )
44
+
45
+ for s in generation_output.sequences:
46
+ result = tokenizer.decode(s).split("### Answer:")[1]
47
+
48
+ return result.strip()
49
+
50
+ # Membuat antarmuka
51
+ iface = gr.Interface(
52
+ fn=chatbot_response,
53
+ inputs=gr.Textbox(placeholder="Type your question...", label="User"),
54
+ outputs=gr.Textbox(label="Bot"),
55
+ title="BioMistralCancer",
56
+ description="Ask anything about Cancer",
57
+ css="""
58
+ body {
59
+ background-size: cover;
60
+ background-repeat: no-repeat;
61
+ background-position: center;
62
+ height: 100vh;
63
+ margin: 0;
64
+ }
65
+ .gradio-container {
66
+ background-color: rgba(255, 255, 255, 0.8);
67
+ border-radius: 10px;
68
+ padding: 20px;
69
+ backdrop-filter: blur(10px);
70
+ }
71
+ """
72
+ )
73
 
74
+ # Menjalankan aplikasi
75
+ iface.launch(share=True)