from utils.load_csv import download_csv def box_plot_data(ASR_model): # Load the CSV file csv_result = f'test_with_{ASR_model.replace("/","_")}_WER.csv' df = download_csv(csv_result) # Display actual column names to check for issues print(df.columns) # Trim column names of any leading or trailing spaces df.columns = df.columns.str.strip() # Extract WER values for Male and Female wer_Gender = { "Male": df[df["gender"] == "male"]["WER"].tolist(), "Female": df[df["gender"] == "female"]["WER"].tolist() } wer_SEG = { "Low": df[df["socioeconomic_bkgd"] == "Low"]["WER"].tolist(), "Affluent": df[df["socioeconomic_bkgd"] == "Affluent"]["WER"].tolist(), "Medium": df[df["socioeconomic_bkgd"] == "Medium"]["WER"].tolist(), } wer_Ethnicity = { "Asian, South Asian or Asian American": df[df["ethnicity"] == "Asian, South Asian or Asian American"]["WER"].tolist(), "Black or African American": df[df["ethnicity"] == "Black or African American"]["WER"].tolist(), "Hispanic, Latino, or Spanish": df[df["ethnicity"] == "Hispanic, Latino, or Spanish"]["WER"].tolist(), "Middle Eastern or North African": df[df["ethnicity"] == "Middle Eastern or North African"]["WER"].tolist(), "Native American, American Indian, or Alaska Native": df[df["ethnicity"] == "Native American, American Indian, or Alaska Native"]["WER"].tolist(), "Native Hawaiian or Other Pacific Islander": df[df["ethnicity"] == "Native Hawaiian or Other Pacific Islander"]["WER"].tolist(), "White": df[df["ethnicity"] == "White"]["WER"].tolist(), } wer_Language = { "English": df[df["first_language"] == "English"]["WER"].tolist(), "German": df[df["first_language"] == "German"]["WER"].tolist(), "French": df[df["first_language"] == "French"]["WER"].tolist(), "Arabic": df[df["first_language"] == "Arabic"]["WER"].tolist(), "Cantonese": df[df["first_language"] == "Cantonese"]["WER"].tolist(), "Creole": df[df["first_language"] == "Creole"]["WER"].tolist(), "Dutch": df[df["first_language"] == "Dutch"]["WER"].tolist(), "English/Turkish": df[df["first_language"] == "English/Turkish"]["WER"].tolist(), "Filipino": df[df["first_language"] == "Filipino"]["WER"].tolist(), "Hindi": df[df["first_language"] == "Hindi"]["WER"].tolist(), "Hmong": df[df["first_language"] == "Hmong"]["WER"].tolist(), "Hindi": df[df["first_language"] == "Hindi"]["WER"].tolist(), "Indonesian": df[df["first_language"] == "Indonesian"]["WER"].tolist(), "Italian": df[df["first_language"] == "Italian"]["WER"].tolist(), "Japanese": df[df["first_language"] == "Japanese"]["WER"].tolist(), "Korean": df[df["first_language"] == "Korean"]["WER"].tolist(), "Laotian": df[df["first_language"] == "Laotian"]["WER"].tolist(), "Malay": df[df["first_language"] == "Malay"]["WER"].tolist(), "Malaysian": df[df["first_language"] == "Malaysian"]["WER"].tolist(), "Mandarin": df[df["first_language"] == "Mandarin"]["WER"].tolist(), "Marathi": df[df["first_language"] == "Marathi"]["WER"].tolist(), "Nepali": df[df["first_language"] == "Nepali"]["WER"].tolist(), "Other": df[df["first_language"] == "Other"]["WER"].tolist(), "Portuguese": df[df["first_language"] == "Portuguese"]["WER"].tolist(), "Russian": df[df["first_language"] == "Russian"]["WER"].tolist(), "Spanish": df[df["first_language"] == "Spanish"]["WER"].tolist(), "Tagalog": df[df["first_language"] == "Tagalog"]["WER"].tolist(), "Turkish": df[df["first_language"] == "Turkish"]["WER"].tolist(), "Russian": df[df["first_language"] == "Russian"]["WER"].tolist(), "Ukrainian": df[df["first_language"] == "Ukrainian"]["WER"].tolist(), "Urdu": df[df["first_language"] == "Urdu"]["WER"].tolist(), "Vietnamese": df[df["first_language"] == "Vietnamese"]["WER"].tolist(), } return wer_Gender, wer_SEG, wer_Ethnicity, wer_Language