from dotenv import load_dotenv from huggingface_hub import HfApi, hf_hub_download import os import io import pandas as pd # Load environment variables from .env file load_dotenv() # ASR_model = "openai/whisper-largev2" # Replace with your ASR model # csv_path = "test.csv" #read from local # csv_transcript = f"test_with_{ASR_model.replace("/","_")}.csv" # to save in dataset repo # csv_result = f"test_with_{ASR_model.replace("/","_")}_WER.csv" # to save in dataset repo # df = pd.read_csv(csv_path) # print(f"CSV Loaded with {len(df)} rows") def upload_csv(df,csv_filename): csv_buffer = io.BytesIO() df.to_csv(csv_buffer, index=False) csv_buffer.seek(0) try: # Upload the generated csv to Hugging Face Hub api = HfApi(token=os.getenv("HF_TOKEN")) print(f"✅ CSV uploading : {csv_filename}") api.upload_file( path_or_fileobj=csv_buffer, path_in_repo=csv_filename, repo_id="satyamr196/asr_fairness_results", repo_type="dataset" ) return True except Exception as e: print(f"⚠️ Could not upload CSV: {csv_filename} — {e}") return False # upload_csv(df,f"test_with_{ASR_model.replace("/","_")}_WER.csv"); def download_csv(csv_filename): repo_id = "satyamr196/asr_fairness_results" try: # Download the CSV file from the dataset repo csv_path = hf_hub_download(repo_id=repo_id, filename=csv_filename, repo_type="dataset") # Load into pandas return pd.read_csv(csv_path) except Exception as e: # print(f"⚠️ Could not load CSV: {csv_filename} — {e}") return None # # # Load the csv from the Hugging Face Hub # df = download_csv(csv_result) # if(df is None): # print(f"CSV not found in the dataset repo. Please upload the file first.") # else: # print(f"CSV Loaded with {len(df)} rows") # print(df)