Spaces:
Running
Running
File size: 9,704 Bytes
9665c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
from typing import Optional, Tuple
import numpy as np
import torch
from torch.fft import irfftn, rfftn
from torch.nn.functional import grid_sample, log_softmax, pad
from .metrics import angle_error
from .utils import make_grid, rotmat2d
class TemplateSampler(torch.nn.Module):
def __init__(self, grid_xz_bev, ppm, num_rotations, optimize=True):
super().__init__()
Δ = 1 / ppm
h, w = grid_xz_bev.shape[:2]
ksize = max(w, h * 2 + 1)
radius = ksize * Δ
grid_xy = make_grid(
radius,
radius,
step_x=Δ,
step_y=Δ,
orig_y=(Δ - radius) / 2,
orig_x=(Δ - radius) / 2,
y_up=True,
)
if optimize:
assert (num_rotations % 4) == 0
angles = torch.arange(
0, 90, 90 / (num_rotations // 4), device=grid_xz_bev.device
)
else:
angles = torch.arange(
0, 360, 360 / num_rotations, device=grid_xz_bev.device
)
rotmats = rotmat2d(angles / 180 * np.pi)
grid_xy_rot = torch.einsum("...nij,...hwj->...nhwi", rotmats, grid_xy)
grid_ij_rot = (grid_xy_rot - grid_xz_bev[..., :1, :1, :]) * grid_xy.new_tensor(
[1, -1]
)
grid_ij_rot = grid_ij_rot / Δ
grid_norm = (grid_ij_rot + 0.5) / grid_ij_rot.new_tensor([w, h]) * 2 - 1
self.optimize = optimize
self.num_rots = num_rotations
self.register_buffer("angles", angles, persistent=False)
self.register_buffer("grid_norm", grid_norm, persistent=False)
def forward(self, image_bev):
grid = self.grid_norm
b, c = image_bev.shape[:2]
n, h, w = grid.shape[:3]
grid = grid[None].repeat_interleave(b, 0).reshape(b * n, h, w, 2)
image = (
image_bev[:, None]
.repeat_interleave(n, 1)
.reshape(b * n, *image_bev.shape[1:])
)
kernels = grid_sample(image, grid.to(image.dtype), align_corners=False).reshape(
b, n, c, h, w
)
if self.optimize: # we have computed only the first quadrant
kernels_quad234 = [torch.rot90(kernels, -i, (-2, -1)) for i in (1, 2, 3)]
kernels = torch.cat([kernels] + kernels_quad234, 1)
return kernels
def conv2d_fft_batchwise(signal, kernel, padding="same", padding_mode="constant"):
if padding == "same":
padding = [i // 2 for i in kernel.shape[-2:]]
padding_signal = [p for p in padding[::-1] for _ in range(2)]
signal = pad(signal, padding_signal, mode=padding_mode)
assert signal.size(-1) % 2 == 0
padding_kernel = [
pad for i in [1, 2] for pad in [0, signal.size(-i) - kernel.size(-i)]
]
kernel_padded = pad(kernel, padding_kernel)
signal_fr = rfftn(signal, dim=(-1, -2))
kernel_fr = rfftn(kernel_padded, dim=(-1, -2))
kernel_fr.imag *= -1 # flip the kernel
output_fr = torch.einsum("bc...,bdc...->bd...", signal_fr, kernel_fr)
output = irfftn(output_fr, dim=(-1, -2))
crop_slices = [slice(0, output.size(0)), slice(0, output.size(1))] + [
slice(0, (signal.size(i) - kernel.size(i) + 1)) for i in [-2, -1]
]
output = output[crop_slices].contiguous()
return output
class SparseMapSampler(torch.nn.Module):
def __init__(self, num_rotations):
super().__init__()
angles = torch.arange(0, 360, 360 / self.conf.num_rotations)
rotmats = rotmat2d(angles / 180 * np.pi)
self.num_rotations = num_rotations
self.register_buffer("rotmats", rotmats, persistent=False)
def forward(self, image_map, p2d_bev):
h, w = image_map.shape[-2:]
locations = make_grid(w, h, device=p2d_bev.device)
p2d_candidates = torch.einsum(
"kji,...i,->...kj", self.rotmats.to(p2d_bev), p2d_bev
)
p2d_candidates = p2d_candidates[..., None, None, :, :] + locations.unsqueeze(-1)
# ... x N x W x H x K x 2
p2d_norm = (p2d_candidates / (image_map.new_tensor([w, h]) - 1)) * 2 - 1
valid = torch.all((p2d_norm >= -1) & (p2d_norm <= 1), -1)
value = grid_sample(
image_map, p2d_norm.flatten(-4, -2), align_corners=True, mode="bilinear"
)
value = value.reshape(image_map.shape[:2] + valid.shape[-4])
return valid, value
def sample_xyr(volume, xy_grid, angle_grid, nearest_for_inf=False):
# (B, C, H, W, N) to (B, C, H, W, N+1)
volume_padded = pad(volume, [0, 1, 0, 0, 0, 0], mode="circular")
size = xy_grid.new_tensor(volume.shape[-3:-1][::-1])
xy_norm = xy_grid / (size - 1) # align_corners=True
angle_norm = (angle_grid / 360) % 1
grid = torch.concat([angle_norm.unsqueeze(-1), xy_norm], -1)
grid_norm = grid * 2 - 1
valid = torch.all((grid_norm >= -1) & (grid_norm <= 1), -1)
value = grid_sample(volume_padded, grid_norm, align_corners=True, mode="bilinear")
# if one of the values used for linear interpolation is infinite,
# we fallback to nearest to avoid propagating inf
if nearest_for_inf:
value_nearest = grid_sample(
volume_padded, grid_norm, align_corners=True, mode="nearest"
)
value = torch.where(~torch.isfinite(value) & valid, value_nearest, value)
return value, valid
def nll_loss_xyr(log_probs, xy, angle):
log_prob, _ = sample_xyr(
log_probs.unsqueeze(1), xy[:, None, None, None], angle[:, None, None, None]
)
nll = -log_prob.reshape(-1) # remove C,H,W,N
return nll
def nll_loss_xyr_smoothed(log_probs, xy, angle, sigma_xy, sigma_r, mask=None):
*_, nx, ny, nr = log_probs.shape
grid_x = torch.arange(nx, device=log_probs.device, dtype=torch.float)
dx = (grid_x - xy[..., None, 0]) / sigma_xy
grid_y = torch.arange(ny, device=log_probs.device, dtype=torch.float)
dy = (grid_y - xy[..., None, 1]) / sigma_xy
dr = (
torch.arange(0, 360, 360 / nr, device=log_probs.device, dtype=torch.float)
- angle[..., None]
) % 360
dr = torch.minimum(dr, 360 - dr) / sigma_r
diff = (
dx[..., None, :, None] ** 2
+ dy[..., :, None, None] ** 2
+ dr[..., None, None, :] ** 2
)
pdf = torch.exp(-diff / 2)
if mask is not None:
pdf.masked_fill_(~mask[..., None], 0)
log_probs = log_probs.masked_fill(~mask[..., None], 0)
pdf /= pdf.sum((-1, -2, -3), keepdim=True)
return -torch.sum(pdf * log_probs.to(torch.float), dim=(-1, -2, -3))
def log_softmax_spatial(x, dims=3):
return log_softmax(x.flatten(-dims), dim=-1).reshape(x.shape)
@torch.jit.script
def argmax_xy(scores: torch.Tensor) -> torch.Tensor:
indices = scores.flatten(-2).max(-1).indices
width = scores.shape[-1]
x = indices % width
y = torch.div(indices, width, rounding_mode="floor")
return torch.stack((x, y), -1)
@torch.jit.script
def expectation_xy(prob: torch.Tensor) -> torch.Tensor:
h, w = prob.shape[-2:]
grid = make_grid(float(w), float(h), device=prob.device).to(prob)
return torch.einsum("...hw,hwd->...d", prob, grid)
@torch.jit.script
def expectation_xyr(
prob: torch.Tensor, covariance: bool = False
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
h, w, num_rotations = prob.shape[-3:]
x, y = torch.meshgrid(
[
torch.arange(w, device=prob.device, dtype=prob.dtype),
torch.arange(h, device=prob.device, dtype=prob.dtype),
],
indexing="xy",
)
grid_xy = torch.stack((x, y), -1)
xy_mean = torch.einsum("...hwn,hwd->...d", prob, grid_xy)
angles = torch.arange(0, 1, 1 / num_rotations, device=prob.device, dtype=prob.dtype)
angles = angles * 2 * np.pi
grid_cs = torch.stack([torch.cos(angles), torch.sin(angles)], -1)
cs_mean = torch.einsum("...hwn,nd->...d", prob, grid_cs)
angle = torch.atan2(cs_mean[..., 1], cs_mean[..., 0])
angle = (angle * 180 / np.pi) % 360
if covariance:
xy_cov = torch.einsum("...hwn,...hwd,...hwk->...dk", prob, grid_xy, grid_xy)
xy_cov = xy_cov - torch.einsum("...d,...k->...dk", xy_mean, xy_mean)
else:
xy_cov = None
xyr_mean = torch.cat((xy_mean, angle.unsqueeze(-1)), -1)
return xyr_mean, xy_cov
@torch.jit.script
def argmax_xyr(scores: torch.Tensor) -> torch.Tensor:
indices = scores.flatten(-3).max(-1).indices
width, num_rotations = scores.shape[-2:]
wr = width * num_rotations
y = torch.div(indices, wr, rounding_mode="floor")
x = torch.div(indices % wr, num_rotations, rounding_mode="floor")
angle_index = indices % num_rotations
angle = angle_index * 360 / num_rotations
xyr = torch.stack((x, y, angle), -1)
return xyr
@torch.jit.script
def mask_yaw_prior(
scores: torch.Tensor, yaw_prior: torch.Tensor, num_rotations: int
) -> torch.Tensor:
step = 360 / num_rotations
step_2 = step / 2
angles = torch.arange(step_2, 360 + step_2, step, device=scores.device)
yaw_init, yaw_range = yaw_prior.chunk(2, dim=-1)
rot_mask = angle_error(angles, yaw_init) < yaw_range
return scores.masked_fill_(~rot_mask[:, None, None], -np.inf)
def fuse_gps(log_prob, uv_gps, ppm, sigma=10, gaussian=False):
grid = make_grid(*log_prob.shape[-3:-1][::-1]).to(log_prob)
dist = torch.sum((grid - uv_gps) ** 2, -1)
sigma_pixel = sigma * ppm
if gaussian:
gps_log_prob = -1 / 2 * dist / sigma_pixel**2
else:
gps_log_prob = torch.where(dist < sigma_pixel**2, 1, -np.inf)
log_prob_fused = log_softmax_spatial(log_prob + gps_log_prob.unsqueeze(-1))
return log_prob_fused
|