Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from PIL import Image, ImageDraw | |
| import numpy as np | |
| import torchvision.transforms as T | |
| import datetime | |
| import shutil | |
| from pathlib import Path | |
| from collections import Counter | |
| import yaml | |
| import numpy as np | |
| import pandas as pd | |
| from ultralytics import YOLO | |
| from sklearn.model_selection import KFold | |
| import glob, os | |
| from PIL import Image | |
| from dotenv import load_dotenv | |
| from roboflow import Roboflow | |
| # Load your model | |
| model = torch.hub.load('ultralytics/yolov8', 'custom', path='best.pt', trust_repo=True) | |
| model.eval() | |
| # Define your classes | |
| classes = [ | |
| "Apple", "Banana", "Beetroot", "Bitter_Gourd", "Bottle_Gourd", "Cabbage", | |
| "Capsicum", "Carrot", "Cauliflower", "Cherry", "Chilli", "Coconut", | |
| "Cucumber", "EggPlant", "Ginger", "Grape", "Green_Orange", "Kiwi", | |
| "Maize", "Mango", "Melon", "Okra", "Onion", "Orange", "Peach", "Pear", | |
| "Peas", "Pineapple", "Pomegranate", "Potato", "Radish", "Strawberry", | |
| "Tomato", "Turnip", "Watermelon", "walnut", "almond" | |
| ] | |
| # Define the inference function | |
| def detect(image): | |
| # Transform the image to tensor | |
| transform = T.Compose([T.ToTensor()]) | |
| input_tensor = transform(image).unsqueeze(0) | |
| # Perform inference | |
| with torch.no_grad(): | |
| detections = model(input_tensor)[0] | |
| # Draw bounding boxes and labels on the image | |
| draw = ImageDraw.Draw(image) | |
| for detection in detections: | |
| # Each detection includes [x1, y1, x2, y2, confidence, class] | |
| x1, y1, x2, y2, conf, cls = detection | |
| if conf >= 0.5: # Consider detections with confidence >= 0.5 | |
| label = classes[int(cls)] | |
| draw.rectangle(((x1, y1), (x2, y2)), outline="red", width=2) | |
| draw.text((x1, y1), f"{label} ({conf:.2f})", fill="red") | |
| return np.array(image) | |
| # Create a Gradio interface | |
| iface = gr.Interface( | |
| fn=detect, | |
| inputs=gr.inputs.Image(source="webcam", tool="editor"), | |
| outputs="image", | |
| live=True, | |
| ) | |
| # Launch the app | |
| iface.launch() |