#!/usr/bin/env python # coding: utf-8 # In[ ]: # import necessary modules from classy import Class from math import pi get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib import matplotlib.pyplot as plt # In[ ]: ##################################################### # # Cosmological parameters and other CLASS parameters # ##################################################### common_settings = {# LambdaCDM parameters 'h':0.67810, 'omega_b':0.02238280, 'omega_cdm':0.12038, 'A_s':2.100549e-09, 'n_s': 0.9660499, 'tau_reio':0.05430842, # output and precision parameters 'output':'tCl,mTk,vTk', 'l_max_scalars':5000, 'P_k_max_1/Mpc':10.0, 'gauge':'newtonian' } # In[ ]: ############### # # call CLASS a first time just to compute z_rec (will compute transfer functions at default: z=0) # ############### M = Class() M.set(common_settings) M.compute() derived = M.get_current_derived_parameters(['z_rec','tau_rec','conformal_age']) print (derived.keys()) z_rec = derived['z_rec'] z_rec = int(1000.*z_rec)/1000. # round down at 4 digits after coma print ('z_rec=',z_rec) # # In the last figure the x-axis will show l/(tau_0-tau_rec), so we need (tau_0-tau_rec) in units of [Mpc/h] # tau_0_minus_tau_rec_hMpc = (derived['conformal_age']-derived['tau_rec'])*M.h() # In[ ]: ################ # # call CLASS again for the perturbations (will compute transfer functions at input value z_rec) # ################ M.empty() # reset input parameters to default, before passing a new parameter set M.set(common_settings) M.set({'z_pk':z_rec}) M.compute() # # save the total Cl's (we will plot them in the last step) # cl_tot = M.raw_cl(5000) # # # load transfer functions at recombination # one_time = M.get_transfer(z_rec) print (one_time.keys()) k = one_time['k (h/Mpc)'] Theta0 = 0.25*one_time['d_g'] phi = one_time['phi'] psi = one_time['psi'] theta_b = one_time['t_b'] # compute related quantitites R = 3./4.*M.Omega_b()/M.Omega_g()/(1+z_rec) # R = 3/4 * (rho_b/rho_gamma) at z_rec zero_point = -(1.+R)*psi # zero point of oscillations: -(1.+R)*psi Theta0_amp = max(Theta0.max(),-Theta0.min()) # Theta0 oscillation amplitude (for vertical scale of plot) print ('At z_rec: R=',R,', Theta0_amp=',Theta0_amp) # In[ ]: # use table of background quantitites to find the wavenumbers corresponding to # Hubble crossing (k = 2 pi a H), sound horizon crossing (k = 2pi / rs) # background = M.get_background() # load background table print (background.keys()) # background_tau = background['conf. time [Mpc]'] # read confromal times in background table background_z = background['z'] # read redshift background_kh = 2.*pi*background['H [1/Mpc]']/(1.+background['z'])/M.h() # read kh = 2pi aH = 2pi H/(1+z) converted to [h/Mpc] background_ks = 2.*pi/background['comov.snd.hrz.']/M.h() # read ks = 2pi/rs converted to [h/Mpc] # # define interpolation functions; we want the value of tau when the argument is equal to 2pi # from scipy.interpolate import interp1d kh_at_tau = interp1d(background_tau,background_kh) ks_at_tau = interp1d(background_tau,background_ks) # # finally get these scales # tau_rec = derived['tau_rec'] kh = kh_at_tau(tau_rec) ks = ks_at_tau(tau_rec) print ('at tau_rec=',tau_rec,', kh=',kh,', ks=',ks) # In[ ]: ##################### # # call CLASS with TSW (intrinsic temperature + Sachs-Wolfe) and save # ##################### M.empty() # clean input M.set(common_settings) # new input M.set({'temperature contributions':'tsw'}) M.compute() cl_TSW = M.raw_cl(5000) # In[ ]: ###################### # # call CLASS with early ISW and save # ###################### M.empty() M.set(common_settings) M.set({'temperature contributions':'eisw'}) M.compute() cl_eISW = M.raw_cl(5000) # In[ ]: ###################### # # call CLASS with late ISW and save # ###################### M.empty() M.set(common_settings) M.set({'temperature contributions':'lisw'}) M.compute() cl_lISW = M.raw_cl(5000) # In[ ]: ###################### # # call CLASS with Doppler and save # ###################### M.empty() M.set(common_settings) M.set({'temperature contributions':'dop'}) M.compute() cl_Doppler = M.raw_cl(5000) # In[ ]: ################# # # start plotting # ################# # fig, (ax_Tk, ax_Tk2, ax_Cl) = plt.subplots(3,sharex=True,figsize=(8,12)) fig.subplots_adjust(hspace=0) ################## # # first figure with transfer functions # ################## ax_Tk.set_xlim([3.e-4,0.5]) ax_Tk.set_ylim([-1.1*Theta0_amp,1.1*Theta0_amp]) ax_Tk.tick_params(axis='x',which='both',bottom='off',top='on',labelbottom='off',labeltop='on') ax_Tk.set_xlabel(r'$\mathrm{k} \,\,\, \mathrm{[h/Mpc]}$') ax_Tk.set_ylabel(r'$\mathrm{Transfer}(\tau_\mathrm{dec},k)$') ax_Tk.xaxis.set_label_position('top') ax_Tk.grid() # ax_Tk.axvline(x=kh,color='r') ax_Tk.axvline(x=ks,color='y') # ax_Tk.annotate(r'Hubble cross.', xy=(kh,0.8*Theta0_amp), xytext=(0.15*kh,0.9*Theta0_amp), arrowprops=dict(facecolor='black', shrink=0.05, width=1, headlength=5, headwidth=5)) ax_Tk.annotate(r'sound hor. cross.', xy=(ks,0.8*Theta0_amp), xytext=(1.3*ks,0.9*Theta0_amp), arrowprops=dict(facecolor='black', shrink=0.05, width=1, headlength=5, headwidth=5)) # ax_Tk.semilogx(k,psi,'y-',label=r'$\psi$') ax_Tk.semilogx(k,phi,'r-',label=r'$\phi$') ax_Tk.semilogx(k,zero_point,'k:',label=r'$-(1+R)\psi$') ax_Tk.semilogx(k,Theta0,'b-',label=r'$\Theta_0$') ax_Tk.semilogx(k,(Theta0+psi),'c',label=r'$\Theta_0+\psi$') ax_Tk.semilogx(k,theta_b,'g-',label=r'$\theta_b$') # ax_Tk.legend(loc='right',bbox_to_anchor=(1.4, 0.5)) ####################### # # second figure with transfer functions squared # ####################### ax_Tk2.set_xlim([3.e-4,0.5]) ax_Tk2.tick_params(axis='x',which='both',bottom='off',top='off',labelbottom='off',labeltop='off') ax_Tk2.set_ylabel(r'$\mathrm{Transfer}(\tau_\mathrm{dec},k)^2$') ax_Tk2.grid() # ax_Tk2.semilogx(k,(Theta0+psi)**2,'c',label=r'$(\Theta_0+\psi)^2$') # ax_Tk2.legend(loc='right',bbox_to_anchor=(1.4, 0.5)) ######################## # # third figure with all contributions to Cls # # We already computed each contribution (TSW, earlyISW, lateISW, Doppler, total) # Note that there is another contribution from polarisation. We don't plot it because it is # too small to be seen, however it is included by default in the total. # # After each step we will save the figure (to get intermediate figures that can be used in slides) # ######################### # presentation settings ax_Cl.set_xlim([3.e-4,0.5]) ax_Cl.set_ylim([0.,8.]) ax_Cl.set_xlabel(r'$\ell/(\tau_0-\tau_{rec}) \,\,\, \mathrm{[h/Mpc]}$') ax_Cl.set_ylabel(r'$\ell (\ell+1) C_l^{TT} / 2 \pi \,\,\, [\times 10^{10}]$') ax_Cl.tick_params(axis='x',which='both',bottom='on',top='off',labelbottom='on',labeltop='off') ax_Cl.grid() # # plot and save with TSW # ax_Cl.semilogx(cl_TSW['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_TSW['ell']*(cl_TSW['ell']+1.)*cl_TSW['tt']/2./pi,'c-',label=r'$\mathrm{T+SW}$') # ax_Cl.legend(loc='right',bbox_to_anchor=(1.4, 0.5)) fig.savefig('one_time_with_cl_1.pdf',bbox_inches='tight') # # plot and save with additionally early ISW and late ISW # ax_Cl.semilogx(cl_eISW['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_eISW['ell']*(cl_eISW['ell']+1.)*cl_eISW['tt']/2./pi,'r-',label=r'$\mathrm{early} \,\, \mathrm{ISW}$') ax_Cl.semilogx(cl_lISW['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_lISW['ell']*(cl_lISW['ell']+1.)*cl_lISW['tt']/2./pi,'y-',label=r'$\mathrm{late} \,\, \mathrm{ISW}$') # ax_Cl.legend(loc='right',bbox_to_anchor=(1.4, 0.5)) fig.savefig('one_time_with_cl_2.pdf',bbox_inches='tight') # # plot and save with additionally Doppler # ax_Cl.semilogx(cl_Doppler['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_Doppler['ell']*(cl_Doppler['ell']+1.)*cl_Doppler['tt']/2./pi,'g-',label=r'$\mathrm{Doppler}$') # ax_Cl.legend(loc='right',bbox_to_anchor=(1.4, 0.5)) fig.savefig('one_time_with_cl_3.pdf',bbox_inches='tight') # # plot and save with additionally total Cls # ax_Cl.semilogx(cl_tot['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_tot['ell']*(cl_tot['ell']+1.)*cl_tot['tt']/2./pi,'k-',label=r'$\mathrm{Total}$') # ax_Cl.legend(loc='right',bbox_to_anchor=(1.4, 0.5)) fig.savefig('one_time_with_cl_tot.pdf',bbox_inches='tight')