#!/usr/bin/env python # coding: utf-8 # In[ ]: # import necessary modules # uncomment to get plots displayed in notebook get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib import matplotlib.pyplot as plt import numpy as np from classy import Class # In[ ]: #Lambda CDM LCDM = Class() LCDM.set({'Omega_cdm':0.25,'Omega_b':0.05}) LCDM.compute() # In[ ]: #Einstein-de Sitter CDM = Class() CDM.set({'Omega_cdm':0.95,'Omega_b':0.05}) CDM.compute() # Just to cross-check that Omega_Lambda is negligible # (but not exactly zero because we neglected radiation) derived = CDM.get_current_derived_parameters(['Omega0_lambda']) print (derived) print ("Omega_Lambda =",derived['Omega0_lambda']) # In[ ]: #Get background quantities and recover their names: baLCDM = LCDM.get_background() baCDM = CDM.get_background() baCDM.keys() # In[ ]: #Get H_0 in order to plot the distances in this unit fLCDM = LCDM.Hubble(0) fCDM = CDM.Hubble(0) # In[ ]: namelist = ['lum. dist.','comov. dist.','ang.diam.dist.'] colours = ['b','g','r'] for name in namelist: idx = namelist.index(name) plt.loglog(baLCDM['z'],fLCDM*baLCDM[name],colours[idx]+'-') plt.legend(namelist,loc='upper left') for name in namelist: idx = namelist.index(name) plt.loglog(baCDM['z'],fCDM*baCDM[name],colours[idx]+'--') plt.xlim([0.07, 10]) plt.ylim([0.08, 20]) plt.xlabel(r"$z$") plt.ylabel(r"$\mathrm{Distance}\times H_0$") plt.tight_layout() plt.savefig('distances.pdf')