CLAPP / class-data /default.ini
Santiago Casas
add prompt and class data
bc65052
# *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*
# * CLASS input parameter file *
# *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*
# This example of input file, intended for CLASS beginners, lists only
# the most common input parameters with small comments. Only lines
# containing an equal sign not preceded by a sharp sign "#" are considered by
# the code, any other line is considered as a comment.
#
# The normal syntax is: parameter = value(s)
# -------------------------
# ----> General parameters:
# -------------------------
# REQUESTED OUTPUT FROM CLASS (Important!)
# - 'tCl' for temperature Cls,
# - 'pCl' for polarization (TE,BB,EE) Cls,
# - 'lCl' for CMB lensing POTENTIAL Cl (Cl^psi-psi, required for lensed Cls),
# - 'nCl' (or 'dCl') for density number count Cls,
# - 'sCl' for galaxy lensing potential Cls (Cl^phi-phi),
# - 'mPk' for total matter power spectrum P(k),
# - 'dTk' for density transfer functions,
# - 'vTk' for velocity transfer functions,
# - 'Sd' for spectral distortions
# --> deflection d: Cl^dd = l(l+1) C_l^phi-phi
# --> convergence kappa and shear gamma: the share the same harmonic
# power spectrum: Cl^gamma-gamma = 1/4 * [(l+2)!/(l-2)!] C_l^phi-phi
output = tCl,pCl,lCl,mPk
#output = tCl,pCl,lCl
#output = mPk,mTk
#output = Sd
lensing = yes # Should the Cls from above be lensed for CMB?
lcmb_rescale = 1 # Amplitude rescale of lensing only
lcmb_tilt = 0 # CMB l tilt of lensing
lcmb_pivot = 0.1 # CMB l pivot of lensing
non_linear = # Select 'halofit' or 'HMCode' or leave blank
ic = ad # Select initial conditions
#(ad,bi,cdi,nid,nvi) -> (adiabatic,baryon,cdm,neutrino density,neutrino velocity)
modes = s # Modes of the perturbations
# (s,v,t) -> (scalar,vector,tensor)
#number_count_contributions = # nCl contributions
#(density,lensing,rsd,gr) -> (density, lensing, rsd+doppler, all others)
#selection=gaussian # nCl window function type
#selection_mean=1.0,1.25,2.0,3.5 # Mean redshifts of nCl window functions
#selection_width = 0.1 # Widths of nCl window functions
#selection_bias = # Biases of nCl window functions
#selection_magnification_bias = # Biases of lensing of nCl
#non_diagonal=3 # Number of non-diagonal terms
l_max_scalars = 2500 # lmax of CMB for scalar mode
#l_max_tensors = 500 # lmax of CMB for tensor mode
#l_max_lss = 300 # lmax of nCl
P_k_max_h/Mpc = 1. # Maximum k for P(k) in 1/Mpc
#P_k_max_1/Mpc = 0.7 # Maximum k for P(k) in h/Mpc
z_pk = 0 # Redshifts of P(k,z)
# ----------------------------
# ----> Cosmological parameters:
# ----------------------------
h = 0.67810 # Dimensionless reduced Hubble parameter (H_0 / (100km/s/Mpc))
#H0 = 67.810 # Hubble parameter in km/s/Mpc
#100*theta_s = 1.041783 # Angular size of the sound horizon, exactly 100(ds_dec/da_dec)
# with decoupling time given by maximum of visibility function
# (different from theta_MC of CosmoMC and
# slightly different from theta_* of CAMB)
T_cmb = 2.7255 # CMB temperature
omega_b = 0.02238280 # Reduced baryon density (Omega*h^2)
#Omega_b = # Baryon density
omega_cdm = 0.1201075 # Reduced cold dark matter density (Omega*h^2)
#Omega_cdm = # CDM density
omega_dcdmdr = 0.0 # Reduced decaying dark matter density (Omega*h^2)
#Omega_dcdmdr = # DCDM density
#Gamma_dcdm = 0.0 # Decay constant of DCDM in km/s/Mpc
Omega_k = 0. # Curvature density
Omega_fld = 0 # Dark Energy as Fluid density
Omega_scf = 0 # Dark Energy as Scalar field density
# Usually Omega_Lambda will be matched by the budget equation sum Omega_i = 1, no need to set it manually
#Omega_Lambda = 0.7 # Cosmological constant density
# If you have respectively 0,1,2, or 3 MASSIVE neutrinos and the default T_ncdm of 0.71611,
# designed to give M_tot/omega_nu of 93.14 eV, and if you want N_eff equal to 3.044,
# then you should pass for N_ur 3.044,2.0308,1.0176, or 0.00441
N_ur = 3.044 # Effective number of MASSLESS neutrino species
#Omega_ur = # Reduced MASSLESS neutrino density (Omega*h^2)
#omega_ur = # MASSLESS neutrino density
N_ncdm = # Massive neutrino species
#m_ncdm = 0.06 # Mass of the massive neutrinos
#omega_ncdm = 0.0006451439 # Reduced massive neutrino density (Omega*h^2)
#Omega_ncdm = # Massive neutrino density
#deg_ncdm = # Degeneracy of massive neutrinos
### For Omega_fld != 0
# Chevalier-Linder-Polarski => CLP
# Early Dark Energy => EDE
#fluid_equation_of_state = CLP
#CLP case
#w0_fld = -0.9
#wa_fld = 0.
#cs2_fld = 1
#EDE case
#w0_fld = -0.9
#Omega_EDE = 0.
#cs2_fld = 1
# ----------------------------
# ----> Thermodynamics/Heating parameters:
# ----------------------------
# Infer YHe from BBN. Alternatively provide your own number here
YHe = BBN
# Recombination code : 'RECFAST' or 'HyRec'
recombination = HyRec
z_reio = 7.6711 # Redshift of reionization
#tau_reio = 0.05430842 # Optical depth of reionization
reio_parametrization = reio_camb
reionization_exponent = 1.5
reionization_width = 0.5
helium_fullreio_redshift = 3.5
helium_fullreio_width = 0.5
### Energy injections
DM_annihilation_cross_section = 0.# Dark Matter annihilation cross section in [cm^3/s]
DM_annihilation_mass = 0. # Dark Matter mass in [GeV]
DM_decay_fraction = 0. # Dark Matter decay fraction
DM_decay_Gamma = 0. # Dark Matter decay width
f_eff_type = on_the_spot # Injection efficiency
chi_type = CK_2004 # Deposition function
# ----------------------------
# ----> Primordial parameters:
# ----------------------------
P_k_ini type = analytic_Pk # Select primordial spectrum
#('analytic_Pk','inflation_V','inflation_H','inflation_V_end','two scales','external_Pk')
k_pivot = 0.05 # Pivot scale for A_s,n_s
A_s = 2.100549e-09 # Amplitude of prim spectrum
#ln10^{10}A_s = 3.0980 # ln Amplitude of prim spectrum
# sigma8 = 0.848365 # Final density averaged over 8 Mpc
n_s = 0.9660499 # Spectrum tilt
alpha_s = 0. # Spectrum running of tilt
#r = 1. # If tensors are activated
# See explanatory.ini for more information about all the different primordial spectra
# ---------------------------
# ----> Spectral distortions:
# ---------------------------
sd_branching_approx = exact # Appriximation for the calculation of the branching ratios
sd_PCA_size = 2 # Number of multipoles in PCA expansion
sd_detector_name = PIXIE # Name of the detector
#sd_detector_nu_min = 30. # Detector specifics
#sd_detector_nu_max = 1000.
#sd_detector_nu_delta = 15.
#sd_detector_bin_number = 65 # Alternative to 'sd_detector_nu_delta'
#sd_detector_delta_Ic = 5.e-26
#include_SZ_effect = no
# ----------------------------------
# ----> Output parameters:
# ----------------------------------
#root = output/default # Root name of output files
overwrite_root = no # Overwrite the output files?
write_background = no # Write background parameter table
write_thermodynamics = no # Write thermodynamics parameter table
#k_output_values = 1e-3,1e-2 # Write perturbations parameter table (at given k)
write_primordial = no # Write primordial parameter table
write_parameters = yeap # Write used/unused parameter files
write_warnings = yes # Warn about forgotten/wrong inputs
#Verbosity
input_verbose = 1
background_verbose = 1
thermodynamics_verbose = 1
perturbations_verbose = 1
transfer_verbose = 1
primordial_verbose = 1
harmonic_verbose = 1
fourier_verbose = 1
lensing_verbose = 1
output_verbose = 1