File size: 8,512 Bytes
bc65052 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
# import necessary modules
from classy import Class
from math import pi
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib
import matplotlib.pyplot as plt
# In[ ]:
#####################################################
#
# Cosmological parameters and other CLASS parameters
#
#####################################################
common_settings = {# LambdaCDM parameters
'h':0.67810,
'omega_b':0.02238280,
'omega_cdm':0.12038,
'A_s':2.100549e-09,
'n_s': 0.9660499,
'tau_reio':0.05430842,
# output and precision parameters
'output':'tCl,mTk,vTk',
'l_max_scalars':5000,
'P_k_max_1/Mpc':10.0,
'gauge':'newtonian'
}
# In[ ]:
###############
#
# call CLASS a first time just to compute z_rec (will compute transfer functions at default: z=0)
#
###############
M = Class()
M.set(common_settings)
M.compute()
derived = M.get_current_derived_parameters(['z_rec','tau_rec','conformal_age'])
print (derived.keys())
z_rec = derived['z_rec']
z_rec = int(1000.*z_rec)/1000. # round down at 4 digits after coma
print ('z_rec=',z_rec)
#
# In the last figure the x-axis will show l/(tau_0-tau_rec), so we need (tau_0-tau_rec) in units of [Mpc/h]
#
tau_0_minus_tau_rec_hMpc = (derived['conformal_age']-derived['tau_rec'])*M.h()
# In[ ]:
################
#
# call CLASS again for the perturbations (will compute transfer functions at input value z_rec)
#
################
M.empty() # reset input parameters to default, before passing a new parameter set
M.set(common_settings)
M.set({'z_pk':z_rec})
M.compute()
#
# save the total Cl's (we will plot them in the last step)
#
cl_tot = M.raw_cl(5000)
#
#
# load transfer functions at recombination
#
one_time = M.get_transfer(z_rec)
print (one_time.keys())
k = one_time['k (h/Mpc)']
Theta0 = 0.25*one_time['d_g']
phi = one_time['phi']
psi = one_time['psi']
theta_b = one_time['t_b']
# compute related quantitites
R = 3./4.*M.Omega_b()/M.Omega_g()/(1+z_rec) # R = 3/4 * (rho_b/rho_gamma) at z_rec
zero_point = -(1.+R)*psi # zero point of oscillations: -(1.+R)*psi
Theta0_amp = max(Theta0.max(),-Theta0.min()) # Theta0 oscillation amplitude (for vertical scale of plot)
print ('At z_rec: R=',R,', Theta0_amp=',Theta0_amp)
# In[ ]:
# use table of background quantitites to find the wavenumbers corresponding to
# Hubble crossing (k = 2 pi a H), sound horizon crossing (k = 2pi / rs)
#
background = M.get_background() # load background table
print (background.keys())
#
background_tau = background['conf. time [Mpc]'] # read confromal times in background table
background_z = background['z'] # read redshift
background_kh = 2.*pi*background['H [1/Mpc]']/(1.+background['z'])/M.h() # read kh = 2pi aH = 2pi H/(1+z) converted to [h/Mpc]
background_ks = 2.*pi/background['comov.snd.hrz.']/M.h() # read ks = 2pi/rs converted to [h/Mpc]
#
# define interpolation functions; we want the value of tau when the argument is equal to 2pi
#
from scipy.interpolate import interp1d
kh_at_tau = interp1d(background_tau,background_kh)
ks_at_tau = interp1d(background_tau,background_ks)
#
# finally get these scales
#
tau_rec = derived['tau_rec']
kh = kh_at_tau(tau_rec)
ks = ks_at_tau(tau_rec)
print ('at tau_rec=',tau_rec,', kh=',kh,', ks=',ks)
# In[ ]:
#####################
#
# call CLASS with TSW (intrinsic temperature + Sachs-Wolfe) and save
#
#####################
M.empty() # clean input
M.set(common_settings) # new input
M.set({'temperature contributions':'tsw'})
M.compute()
cl_TSW = M.raw_cl(5000)
# In[ ]:
######################
#
# call CLASS with early ISW and save
#
######################
M.empty()
M.set(common_settings)
M.set({'temperature contributions':'eisw'})
M.compute()
cl_eISW = M.raw_cl(5000)
# In[ ]:
######################
#
# call CLASS with late ISW and save
#
######################
M.empty()
M.set(common_settings)
M.set({'temperature contributions':'lisw'})
M.compute()
cl_lISW = M.raw_cl(5000)
# In[ ]:
######################
#
# call CLASS with Doppler and save
#
######################
M.empty()
M.set(common_settings)
M.set({'temperature contributions':'dop'})
M.compute()
cl_Doppler = M.raw_cl(5000)
# In[ ]:
#################
#
# start plotting
#
#################
#
fig, (ax_Tk, ax_Tk2, ax_Cl) = plt.subplots(3,sharex=True,figsize=(8,12))
fig.subplots_adjust(hspace=0)
##################
#
# first figure with transfer functions
#
##################
ax_Tk.set_xlim([3.e-4,0.5])
ax_Tk.set_ylim([-1.1*Theta0_amp,1.1*Theta0_amp])
ax_Tk.tick_params(axis='x',which='both',bottom='off',top='on',labelbottom='off',labeltop='on')
ax_Tk.set_xlabel(r'$\mathrm{k} \,\,\, \mathrm{[h/Mpc]}$')
ax_Tk.set_ylabel(r'$\mathrm{Transfer}(\tau_\mathrm{dec},k)$')
ax_Tk.xaxis.set_label_position('top')
ax_Tk.grid()
#
ax_Tk.axvline(x=kh,color='r')
ax_Tk.axvline(x=ks,color='y')
#
ax_Tk.annotate(r'Hubble cross.',
xy=(kh,0.8*Theta0_amp),
xytext=(0.15*kh,0.9*Theta0_amp),
arrowprops=dict(facecolor='black', shrink=0.05, width=1, headlength=5, headwidth=5))
ax_Tk.annotate(r'sound hor. cross.',
xy=(ks,0.8*Theta0_amp),
xytext=(1.3*ks,0.9*Theta0_amp),
arrowprops=dict(facecolor='black', shrink=0.05, width=1, headlength=5, headwidth=5))
#
ax_Tk.semilogx(k,psi,'y-',label=r'$\psi$')
ax_Tk.semilogx(k,phi,'r-',label=r'$\phi$')
ax_Tk.semilogx(k,zero_point,'k:',label=r'$-(1+R)\psi$')
ax_Tk.semilogx(k,Theta0,'b-',label=r'$\Theta_0$')
ax_Tk.semilogx(k,(Theta0+psi),'c',label=r'$\Theta_0+\psi$')
ax_Tk.semilogx(k,theta_b,'g-',label=r'$\theta_b$')
#
ax_Tk.legend(loc='right',bbox_to_anchor=(1.4, 0.5))
#######################
#
# second figure with transfer functions squared
#
#######################
ax_Tk2.set_xlim([3.e-4,0.5])
ax_Tk2.tick_params(axis='x',which='both',bottom='off',top='off',labelbottom='off',labeltop='off')
ax_Tk2.set_ylabel(r'$\mathrm{Transfer}(\tau_\mathrm{dec},k)^2$')
ax_Tk2.grid()
#
ax_Tk2.semilogx(k,(Theta0+psi)**2,'c',label=r'$(\Theta_0+\psi)^2$')
#
ax_Tk2.legend(loc='right',bbox_to_anchor=(1.4, 0.5))
########################
#
# third figure with all contributions to Cls
#
# We already computed each contribution (TSW, earlyISW, lateISW, Doppler, total)
# Note that there is another contribution from polarisation. We don't plot it because it is
# too small to be seen, however it is included by default in the total.
#
# After each step we will save the figure (to get intermediate figures that can be used in slides)
#
#########################
# presentation settings
ax_Cl.set_xlim([3.e-4,0.5])
ax_Cl.set_ylim([0.,8.])
ax_Cl.set_xlabel(r'$\ell/(\tau_0-\tau_{rec}) \,\,\, \mathrm{[h/Mpc]}$')
ax_Cl.set_ylabel(r'$\ell (\ell+1) C_l^{TT} / 2 \pi \,\,\, [\times 10^{10}]$')
ax_Cl.tick_params(axis='x',which='both',bottom='on',top='off',labelbottom='on',labeltop='off')
ax_Cl.grid()
#
# plot and save with TSW
#
ax_Cl.semilogx(cl_TSW['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_TSW['ell']*(cl_TSW['ell']+1.)*cl_TSW['tt']/2./pi,'c-',label=r'$\mathrm{T+SW}$')
#
ax_Cl.legend(loc='right',bbox_to_anchor=(1.4, 0.5))
fig.savefig('one_time_with_cl_1.pdf',bbox_inches='tight')
#
# plot and save with additionally early ISW and late ISW
#
ax_Cl.semilogx(cl_eISW['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_eISW['ell']*(cl_eISW['ell']+1.)*cl_eISW['tt']/2./pi,'r-',label=r'$\mathrm{early} \,\, \mathrm{ISW}$')
ax_Cl.semilogx(cl_lISW['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_lISW['ell']*(cl_lISW['ell']+1.)*cl_lISW['tt']/2./pi,'y-',label=r'$\mathrm{late} \,\, \mathrm{ISW}$')
#
ax_Cl.legend(loc='right',bbox_to_anchor=(1.4, 0.5))
fig.savefig('one_time_with_cl_2.pdf',bbox_inches='tight')
#
# plot and save with additionally Doppler
#
ax_Cl.semilogx(cl_Doppler['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_Doppler['ell']*(cl_Doppler['ell']+1.)*cl_Doppler['tt']/2./pi,'g-',label=r'$\mathrm{Doppler}$')
#
ax_Cl.legend(loc='right',bbox_to_anchor=(1.4, 0.5))
fig.savefig('one_time_with_cl_3.pdf',bbox_inches='tight')
#
# plot and save with additionally total Cls
#
ax_Cl.semilogx(cl_tot['ell']/tau_0_minus_tau_rec_hMpc,1.e10*cl_tot['ell']*(cl_tot['ell']+1.)*cl_tot['tt']/2./pi,'k-',label=r'$\mathrm{Total}$')
#
ax_Cl.legend(loc='right',bbox_to_anchor=(1.4, 0.5))
fig.savefig('one_time_with_cl_tot.pdf',bbox_inches='tight')
|