File size: 125,323 Bytes
bc65052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
"""
.. module:: classy
    :synopsis: Python wrapper around CLASS
.. moduleauthor:: Karim Benabed <benabed@iap.fr>
.. moduleauthor:: Benjamin Audren <benjamin.audren@epfl.ch>
.. moduleauthor:: Julien Lesgourgues <lesgourg@cern.ch>

This module defines a class called Class. It is used with Monte Python to
extract cosmological parameters.

# JL 14.06.2017: TODO: check whether we should free somewhere the allocated fc.filename and titles, data (4 times)

"""
from math import exp,log
import numpy as np
cimport numpy as np
from libc.stdlib cimport *
from libc.stdio cimport *
from libc.string cimport *
import cython
cimport cython
from scipy.interpolate import CubicSpline
from scipy.interpolate import UnivariateSpline
from scipy.interpolate import interp1d

# Nils : Added for python 3.x and python 2.x compatibility
import sys
def viewdictitems(d):
    if sys.version_info >= (3,0):
        return d.items()
    else:
        return d.viewitems()

ctypedef np.float64_t DTYPE_t
ctypedef np.int32_t DTYPE_i



# Import the .pxd containing definitions
from cclassy cimport *

__version__ = _VERSION_.decode("utf-8")

# Implement a specific Exception (this might not be optimally designed, nor
# even acceptable for python standards. It, however, does the job).
# The idea is to raise either an AttributeError if the problem happened while
# reading the parameters (in the normal Class, this would just return a line in
# the unused_parameters file), or a NameError in other cases. This allows
# MontePython to handle things differently.
class CosmoError(Exception):
    def __init__(self, message=""):
        self.message = message.decode() if isinstance(message,bytes) else message

    def __str__(self):
        return '\n\nError in Class: ' + self.message


class CosmoSevereError(CosmoError):
    """
    Raised when Class failed to understand one or more input parameters.

    This case would not raise any problem in Class default behaviour. However,
    for parameter extraction, one has to be sure that all input parameters were
    understood, otherwise the wrong cosmological model would be selected.
    """
    pass


class CosmoComputationError(CosmoError):
    """
    Raised when Class could not compute the cosmology at this point.

    This will be caught by the parameter extraction code to give an extremely
    unlikely value to this point
    """
    pass


cdef class Class:
    """
    Class wrapping, creates the glue between C and python

    The actual Class wrapping, the only class we will call from MontePython
    (indeed the only one we will import, with the command:
    from classy import Class

    """
    # List of used structures, defined in the header file. They have to be
    # "cdefined", because they correspond to C structures
    cdef precision pr
    cdef background ba
    cdef thermodynamics th
    cdef perturbations pt
    cdef primordial pm
    cdef fourier fo
    cdef transfer tr
    cdef harmonic hr
    cdef output op
    cdef lensing le
    cdef distortions sd
    cdef file_content fc

    cdef int computed # Flag to see if classy has already computed with the given pars
    cdef int allocated # Flag to see if classy structs are allocated already
    cdef object _pars # Dictionary of the parameters
    cdef object ncp   # Keeps track of the structures initialized, in view of cleaning.

    _levellist = ["input","background","thermodynamics","perturbations", "primordial", "fourier", "transfer", "harmonic", "lensing", "distortions"]

    # Defining two new properties to recover, respectively, the parameters used
    # or the age (set after computation). Follow this syntax if you want to
    # access other quantities. Alternatively, you can also define a method, and
    # call it (see _T_cmb method, at the very bottom).
    property pars:
        def __get__(self):
            return self._pars
    property state:
        def __get__(self):
            return True
    property Omega_nu:
        def __get__(self):
            return self.ba.Omega0_ncdm_tot
    property nonlinear_method:
        def __get__(self):
            return self.fo.method

    def set_default(self):
        _pars = {
            "output":"tCl mPk",}
        self.set(**_pars)

    def __cinit__(self, default=False):
        cdef char* dumc
        self.allocated = False
        self.computed = False
        self._pars = {}
        self.fc.size=0
        self.fc.filename = <char*>malloc(sizeof(char)*30)
        assert(self.fc.filename!=NULL)
        dumc = "NOFILE"
        sprintf(self.fc.filename,"%s",dumc)
        self.ncp = set()
        if default: self.set_default()

    def __dealloc__(self):
        if self.allocated:
          self.struct_cleanup()
        self.empty()
        # Reset all the fc to zero if its not already done
        if self.fc.size !=0:
            self.fc.size=0
            free(self.fc.name)
            free(self.fc.value)
            free(self.fc.read)
            free(self.fc.filename)

    # Set up the dictionary
    def set(self,*pars,**kars):
        oldpars = self._pars.copy()
        if len(pars)==1:
            self._pars.update(dict(pars[0]))
        elif len(pars)!=0:
            raise CosmoSevereError("bad call")
        self._pars.update(kars)
        if viewdictitems(self._pars) <= viewdictitems(oldpars):
          return # Don't change the computed states, if the new dict was already contained in the previous dict
        self.computed=False
        return True

    def empty(self):
        self._pars = {}
        self.computed = False

    # Create an equivalent of the parameter file. Non specified values will be
    # taken at their default (in Class)
    def _fillparfile(self):
        cdef char* dumc

        if self.fc.size!=0:
            free(self.fc.name)
            free(self.fc.value)
            free(self.fc.read)
        self.fc.size = len(self._pars)
        self.fc.name = <FileArg*> malloc(sizeof(FileArg)*len(self._pars))
        assert(self.fc.name!=NULL)

        self.fc.value = <FileArg*> malloc(sizeof(FileArg)*len(self._pars))
        assert(self.fc.value!=NULL)

        self.fc.read = <short*> malloc(sizeof(short)*len(self._pars))
        assert(self.fc.read!=NULL)

        # fill parameter file
        i = 0
        for kk in self._pars:

            dumcp = kk.strip().encode()
            dumc = dumcp
            sprintf(self.fc.name[i],"%s",dumc)
            dumcp = str(self._pars[kk]).strip().encode()
            dumc = dumcp
            sprintf(self.fc.value[i],"%s",dumc)
            self.fc.read[i] = _FALSE_
            i+=1

    # Called at the end of a run, to free memory
    def struct_cleanup(self):
        if(self.allocated != True):
          return
        if self.sd.is_allocated:
            distortions_free(&self.sd)
        if self.le.is_allocated:
            lensing_free(&self.le)
        if self.hr.is_allocated:
            harmonic_free(&self.hr)
        if self.tr.is_allocated:
            transfer_free(&self.tr)
        if self.fo.is_allocated:
            fourier_free(&self.fo)
        if self.pm.is_allocated:
            primordial_free(&self.pm)
        if self.pt.is_allocated:
            perturbations_free(&self.pt)
        if self.th.is_allocated:
            thermodynamics_free(&self.th)
        if self.ba.is_allocated:
            background_free(&self.ba)
        self.ncp = set()

        self.allocated = False
        self.computed = False

    def _check_task_dependency(self, level):
        """
        Fill the level list with all the needed modules

        .. warning::

            the ordering of modules is obviously dependent on CLASS module order
            in the main.c file. This has to be updated in case of a change to
            this file.

        Parameters
        ----------

        level : list
            list of strings, containing initially only the last module required.
            For instance, to recover all the modules, the input should be
            ['lensing']

        """
        # If it's a string only, treat as a list
        if isinstance(level, str):
          level=[level]
        # For each item in the list
        levelset = set()
        for item in level:
          # If the item is not in the list of allowed levels, make error message
          if item not in self._levellist:
            raise CosmoSevereError("Unknown computation level: '{}'".format(item))
          # Otherwise, add to list of levels up to and including the specified level
          levelset.update(self._levellist[:self._levellist.index(item)+1])
        return levelset

    def _pars_check(self, key, value, contains=False, add=""):
        val = ""
        if key in self._pars:
            val = self._pars[key]
            if contains:
                if value in val:
                    return True
            else:
                if value==val:
                    return True
        if add:
            sep = " "
            if isinstance(add,str):
                sep = add

            if contains and val:
                    self.set({key:val+sep+value})
            else:
                self.set({key:value})
            return True
        return False

    def compute(self, level=["distortions"]):
        """
        compute(level=["distortions"])

        Main function, execute all the _init methods for all desired modules.
        This is called in MontePython, and this ensures that the Class instance
        of this class contains all the relevant quantities. Then, one can deduce
        Pk, Cl, etc...

        Parameters
        ----------
        level : list
                list of the last module desired. The internal function
                _check_task_dependency will then add to this list all the
                necessary modules to compute in order to initialize this last
                one. The default last module is "lensing".

        .. warning::

            level default value should be left as an array (it was creating
            problem when casting as a set later on, in _check_task_dependency)

        """
        cdef ErrorMsg errmsg

        # Append to the list level all the modules necessary to compute.
        level = self._check_task_dependency(level)

        # Check if this function ran before (self.computed should be true), and
        # if no other modules were requested, i.e. if self.ncp contains (or is
        # equivalent to) level. If it is the case, simply stop the execution of
        # the function.
        if self.computed and self.ncp.issuperset(level):
            return

        # Check if already allocated to prevent memory leaks
        if self.allocated:
            self.struct_cleanup()

        # Otherwise, proceed with the normal computation.
        self.computed = False

        # Equivalent of writing a parameter file
        self._fillparfile()

        # self.ncp will contain the list of computed modules (under the form of
        # a set, instead of a python list)
        self.ncp=set()
        # Up until the empty set, all modules are allocated
        # (And then we successively keep track of the ones we allocate additionally)
        self.allocated = True

        # --------------------------------------------------------------------
        # Check the presence for all CLASS modules in the list 'level'. If a
        # module is found in level, executure its "_init" method.
        # --------------------------------------------------------------------
        # The input module should raise a CosmoSevereError, because
        # non-understood parameters asked to the wrapper is a problematic
        # situation.
        if "input" in level:
            if input_read_from_file(&self.fc, &self.pr, &self.ba, &self.th,
                                    &self.pt, &self.tr, &self.pm, &self.hr,
                                    &self.fo, &self.le, &self.sd, &self.op, errmsg) == _FAILURE_:
                raise CosmoSevereError(errmsg)
            self.ncp.add("input")
            # This part is done to list all the unread parameters, for debugging
            problem_flag = False
            problematic_parameters = []
            for i in range(self.fc.size):
                if self.fc.read[i] == _FALSE_:
                    problem_flag = True
                    problematic_parameters.append(self.fc.name[i].decode())
            if problem_flag:
                raise CosmoSevereError(
                    "Class did not read input parameter(s): %s\n" % ', '.join(
                    problematic_parameters))

        # The following list of computation is straightforward. If the "_init"
        # methods fail, call `struct_cleanup` and raise a CosmoComputationError
        # with the error message from the faulty module of CLASS.
        if "background" in level:
            if background_init(&(self.pr), &(self.ba)) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.ba.error_message)
            self.ncp.add("background")

        if "thermodynamics" in level:
            if thermodynamics_init(&(self.pr), &(self.ba),
                                   &(self.th)) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.th.error_message)
            self.ncp.add("thermodynamics")

        if "perturbations" in level:
            if perturbations_init(&(self.pr), &(self.ba),
                            &(self.th), &(self.pt)) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.pt.error_message)
            self.ncp.add("perturbations")

        if "primordial" in level:
            if primordial_init(&(self.pr), &(self.pt),
                               &(self.pm)) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.pm.error_message)
            self.ncp.add("primordial")

        if "fourier" in level:
            if fourier_init(&self.pr, &self.ba, &self.th,
                              &self.pt, &self.pm, &self.fo) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.fo.error_message)
            self.ncp.add("fourier")

        if "transfer" in level:
            if transfer_init(&(self.pr), &(self.ba), &(self.th),
                             &(self.pt), &(self.fo), &(self.tr)) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.tr.error_message)
            self.ncp.add("transfer")

        if "harmonic" in level:
            if harmonic_init(&(self.pr), &(self.ba), &(self.pt),
                            &(self.pm), &(self.fo), &(self.tr),
                            &(self.hr)) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.hr.error_message)
            self.ncp.add("harmonic")

        if "lensing" in level:
            if lensing_init(&(self.pr), &(self.pt), &(self.hr),
                            &(self.fo), &(self.le)) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.le.error_message)
            self.ncp.add("lensing")

        if "distortions" in level:
            if distortions_init(&(self.pr), &(self.ba), &(self.th),
                                &(self.pt), &(self.pm), &(self.sd)) == _FAILURE_:
                self.struct_cleanup()
                raise CosmoComputationError(self.sd.error_message)
            self.ncp.add("distortions")

        self.computed = True

        # At this point, the cosmological instance contains everything needed. The
        # following functions are only to output the desired numbers
        return

    def set_baseline(self, baseline_name):
        # Taken from montepython [https://github.com/brinckmann/montepython_public] (see also 1210.7183, 1804.07261)
        if ('planck' in baseline_name and '18' in baseline_name and 'lens' in baseline_name and 'bao' in baseline_name) or 'p18lb' in baseline_name.lower():
          self.set({'omega_b':2.255065e-02,
                    'omega_cdm':1.193524e-01,
                    'H0':6.776953e+01,
                    'A_s':2.123257e-09,
                    'n_s':9.686025e-01,
                    'z_reio':8.227371e+00,

                    'N_ur':2.0328,
                    'N_ncdm':1,
                    'm_ncdm':0.06,
                    'T_ncdm':0.71611,

                    'output':'mPk, tCl, pCl, lCl',
                    'lensing':'yes',
                    'P_k_max_h/Mpc':1.0,
                    'non_linear':'halofit'
                    })

        elif ('planck' in baseline_name and '18' in baseline_name and 'lens' in baseline_name) or 'p18l' in baseline_name.lower():
          self.set({'omega_b':2.236219e-02,
                    'omega_cdm':1.201668e-01,
                    'H0':6.726996e+01,
                    'A_s':2.102880e-09,
                    'n_s':9.661489e-01,
                    'z_reio':7.743057e+00,

                    'N_ur':2.0328,
                    'N_ncdm':1,
                    'm_ncdm':0.06,
                    'T_ncdm':0.71611,

                    'output':'mPk, tCl, pCl, lCl',
                    'lensing':'yes',
                    'P_k_max_h/Mpc':1.0,
                    'non_linear':'halofit'
                    })

        elif ('planck' in baseline_name and '18' in baseline_name) or 'p18' in baseline_name.lower():
          self.set({'omega_b':2.237064e-02,
                    'omega_cdm':1.214344e-01,
                    'H0':6.685836e+01,
                    'A_s':2.112203e-09,
                    'n_s':9.622800e-01,
                    'z_reio':7.795700e+00,

                    'N_ur':2.0328,
                    'N_ncdm':1,
                    'm_ncdm':0.06,
                    'T_ncdm':0.71611,

                    'output':'mPk, tCl, pCl, lCl',
                    'lensing':'yes',
                    'P_k_max_h/Mpc':1.0})
        else:
          raise CosmoSevereError("Unrecognized baseline case '{}'".format(baseline_name))

    @property
    def density_factor(self):
        """
        The density factor required to convert from the class-units of density to kg/m^3 (SI units)
        """
        return 3*_c_*_c_/(8*np.pi*_G_)/(_Mpc_over_m_*_Mpc_over_m_)

    @property
    def Mpc_to_m(self):
        return _Mpc_over_m_

    @property
    def kg_to_eV(self):
        return _c_*_c_/_eV_

    @property
    def kgm3_to_eVMpc3(self):
        """
        Convert from kg/m^3 to eV/Mpc^3
        """
        return self.kg_to_eV*self.Mpc_to_m**3

    @property
    def kg_to_Msol(self):
        return 1/(2.0e30)

    @property
    def kgm3_to_MsolMpc3(self):
        """
        Convert from kg/m^3 to Msol/Mpc^3
        """
        return self.kg_to_Msol*self.Mpc_to_m**3

    def raw_cl(self, lmax=-1, nofail=False):
        """
        raw_cl(lmax=-1, nofail=False)

        Return a dictionary of the primary C_l

        Parameters
        ----------
        lmax : int, optional
                Define the maximum l for which the C_l will be returned
                (inclusively). This number will be checked against the maximum l
                at which they were actually computed by CLASS, and an error will
                be raised if the desired lmax is bigger than what CLASS can
                give.
        nofail: bool, optional
                Check and enforce the computation of the harmonic module
                beforehand, with the desired lmax.

        Returns
        -------
        cl : dict
                Dictionary that contains the power spectrum for 'tt', 'te', etc... The
                index associated with each is defined wrt. Class convention, and are non
                important from the python point of view. It also returns now the
                ell array.
        """
        self.compute(["harmonic"])
        cdef int lmaxR

        # Define a list of integers, refering to the flags and indices of each
        # possible output Cl. It allows for a clear and concise way of looping
        # over them, checking if they are defined or not.
        has_flags = [
            (self.hr.has_tt, self.hr.index_ct_tt, 'tt'),
            (self.hr.has_ee, self.hr.index_ct_ee, 'ee'),
            (self.hr.has_te, self.hr.index_ct_te, 'te'),
            (self.hr.has_bb, self.hr.index_ct_bb, 'bb'),
            (self.hr.has_pp, self.hr.index_ct_pp, 'pp'),
            (self.hr.has_tp, self.hr.index_ct_tp, 'tp'),]
        spectra = []

        for flag, index, name in has_flags:
            if flag:
                spectra.append(name)

        # We need to be able to gracefully exit BEFORE allocating things (!)
        if not spectra:
            raise CosmoSevereError("No Cl computed")

        # We need to be able to gracefully exit BEFORE allocating things (!)
        lmaxR = self.hr.l_max_tot
        if lmax == -1:
            lmax = lmaxR
        if lmax > lmaxR:
            if nofail:
                self._pars_check("l_max_scalars",lmax)
                self.compute(["lensing"])
            else:
                raise CosmoSevereError("Can only compute up to lmax=%d"%lmaxR)

        # Now that the conditions are all checked, we can allocate and do what we want

        #temporary storage for the cls (total)
        cdef double *rcl = <double*> calloc(self.hr.ct_size,sizeof(double))

        # Quantities for tensor modes
        cdef double **cl_md = <double**> calloc(self.hr.md_size, sizeof(double*))
        for index_md in range(self.hr.md_size):
            cl_md[index_md] = <double*> calloc(self.hr.ct_size, sizeof(double))

        # Quantities for isocurvature modes
        cdef double **cl_md_ic = <double**> calloc(self.hr.md_size, sizeof(double*))
        for index_md in range(self.hr.md_size):
            cl_md_ic[index_md] = <double*> calloc(self.hr.ct_size*self.hr.ic_ic_size[index_md], sizeof(double))

        # Initialise all the needed Cls arrays
        cl = {}
        for elem in spectra:
            cl[elem] = np.zeros(lmax+1, dtype=np.double)

        success = True
        # Recover for each ell the information from CLASS
        for ell from 2<=ell<lmax+1:
            if harmonic_cl_at_l(&self.hr, ell, rcl, cl_md, cl_md_ic) == _FAILURE_:
                success = False
                break
            for flag, index, name in has_flags:
                if name in spectra:
                    cl[name][ell] = rcl[index]
        cl['ell'] = np.arange(lmax+1)

        free(rcl)
        for index_md in range(self.hr.md_size):
            free(cl_md[index_md])
            free(cl_md_ic[index_md])
        free(cl_md)
        free(cl_md_ic)

        # This has to be delayed until AFTER freeing the memory
        if not success:
          raise CosmoSevereError(self.hr.error_message)

        return cl

    def lensed_cl(self, lmax=-1,nofail=False):
        """
        lensed_cl(lmax=-1, nofail=False)

        Return a dictionary of the lensed C_l, computed by CLASS, without the
        density C_ls. They must be asked separately with the function aptly
        named density_cl

        Parameters
        ----------
        lmax : int, optional
                Define the maximum l for which the C_l will be returned (inclusively)
        nofail: bool, optional
                Check and enforce the computation of the lensing module beforehand

        Returns
        -------
        cl : dict
                Dictionary that contains the power spectrum for 'tt', 'te', etc... The
                index associated with each is defined wrt. Class convention, and are non
                important from the python point of view.
        """
        self.compute(["lensing"])
        cdef int lmaxR

        # Define a list of integers, refering to the flags and indices of each
        # possible output Cl. It allows for a clear and concise way of looping
        # over them, checking if they are defined or not.
        has_flags = [
            (self.le.has_tt, self.le.index_lt_tt, 'tt'),
            (self.le.has_ee, self.le.index_lt_ee, 'ee'),
            (self.le.has_te, self.le.index_lt_te, 'te'),
            (self.le.has_bb, self.le.index_lt_bb, 'bb'),
            (self.le.has_pp, self.le.index_lt_pp, 'pp'),
            (self.le.has_tp, self.le.index_lt_tp, 'tp'),]
        spectra = []

        for flag, index, name in has_flags:
            if flag:
                spectra.append(name)

        # We need to be able to gracefully exit BEFORE allocating things (!)
        if not spectra:
            raise CosmoSevereError("No lensed Cl computed")

        # We need to be able to gracefully exit BEFORE allocating things (!)
        lmaxR = self.le.l_lensed_max
        if lmax == -1:
            lmax = lmaxR
        if lmax > lmaxR:
            if nofail:
                self._pars_check("l_max_scalars",lmax)
                self.compute(["lensing"])
            else:
                raise CosmoSevereError("Can only compute up to lmax=%d"%lmaxR)

        # Now that the conditions are all checked, we can allocate and do what we want
        cdef double *lcl = <double*> calloc(self.le.lt_size,sizeof(double))

        cl = {}
        success = True
        # Simple Cls, for temperature and polarisation, are not so big in size
        for elem in spectra:
            cl[elem] = np.zeros(lmax+1, dtype=np.double)
        for ell from 2<=ell<lmax+1:
            if lensing_cl_at_l(&self.le,ell,lcl) == _FAILURE_:
                success = False
                break
            for flag, index, name in has_flags:
                if name in spectra:
                    cl[name][ell] = lcl[index]
        cl['ell'] = np.arange(lmax+1)

        free(lcl)

        # This has to be delayed until AFTER freeing the memory
        if not success:
          raise CosmoSevereError(self.le.error_message)

        return cl

    def density_cl(self, lmax=-1, nofail=False):
        """
        density_cl(lmax=-1, nofail=False)

        Return a dictionary of the primary C_l for the matter

        Parameters
        ----------
        lmax : int, optional
            Define the maximum l for which the C_l will be returned (inclusively)
        nofail: bool, optional
            Check and enforce the computation of the lensing module beforehand

        Returns
        -------
        cl : numpy array of numpy.ndarrays
            Array that contains the list (in this order) of self correlation of
            1st bin, then successive correlations (set by non_diagonal) to the
            following bins, then self correlation of 2nd bin, etc. The array
            starts at index_ct_dd.
        """
        self.compute(["harmonic"])
        cdef int lmaxR

        lmaxR = self.pt.l_lss_max
        has_flags = [
            (self.hr.has_dd, self.hr.index_ct_dd, 'dd'),
            (self.hr.has_td, self.hr.index_ct_td, 'td'),
            (self.hr.has_ll, self.hr.index_ct_ll, 'll'),
            (self.hr.has_dl, self.hr.index_ct_dl, 'dl'),
            (self.hr.has_tl, self.hr.index_ct_tl, 'tl')]
        spectra = []

        for flag, index, name in has_flags:
            if flag:
                spectra.append(name)
                l_max_flag = self.hr.l_max_ct[self.hr.index_md_scalars][index]
                if l_max_flag < lmax and lmax > 0:
                    raise CosmoSevereError(
                        "the %s spectrum was computed until l=%i " % (
                            name.upper(), l_max_flag) +
                        "but you asked a l=%i" % lmax)

        # We need to be able to gracefully exit BEFORE allocating things (!)
        if not spectra:
            raise CosmoSevereError("No density Cl computed")

        # We need to be able to gracefully exit BEFORE allocating things (!)
        if lmax == -1:
            lmax = lmaxR
        if lmax > lmaxR:
            if nofail:
                self._pars_check("l_max_lss",lmax)
                self._pars_check("output",'nCl')
                self.compute()
            else:
                raise CosmoSevereError("Can only compute up to lmax=%d"%lmaxR)

        # Now that the conditions are all checked, we can allocate and do what we want
        cdef double *dcl = <double*> calloc(self.hr.ct_size,sizeof(double))

        # Quantities for tensor modes
        cdef double **cl_md = <double**> calloc(self.hr.md_size, sizeof(double*))
        for index_md in range(self.hr.md_size):
            cl_md[index_md] = <double*> calloc(self.hr.ct_size, sizeof(double))

        # Quantities for isocurvature modes
        cdef double **cl_md_ic = <double**> calloc(self.hr.md_size, sizeof(double*))
        for index_md in range(self.hr.md_size):
            cl_md_ic[index_md] = <double*> calloc(self.hr.ct_size*self.hr.ic_ic_size[index_md], sizeof(double))

        cl = {}

        # For density Cls, we compute the names for each combination, which will also correspond to the size
        names = {'dd':[],'ll':[],'dl':[]}
        for index_d1 in range(self.hr.d_size):
          for index_d2 in range(index_d1, min(index_d1+self.hr.non_diag+1, self.hr.d_size)):
            names['dd'].append("dens[%d]-dens[%d]"%(index_d1+1, index_d2+1))
            names['ll'].append("lens[%d]-lens[%d]"%(index_d1+1, index_d2+1))
          for index_d2 in range(max(index_d1-self.hr.non_diag,0), min(index_d1+self.hr.non_diag+1, self.hr.d_size)):
            names['dl'].append("dens[%d]-lens[%d]"%(index_d1+1, index_d2+1))

        for elem in names:
            if elem in spectra:
                cl[elem] = {}
                for name in names[elem]:
                    cl[elem][name] = np.zeros(lmax+1, dtype=np.double)

        for elem in ['td', 'tl']:
            if elem in spectra:
                cl[elem] = np.zeros(lmax+1, dtype=np.double)

        success = True
        for ell from 2<=ell<lmax+1:
            if harmonic_cl_at_l(&self.hr, ell, dcl, cl_md, cl_md_ic) == _FAILURE_:
                success = False
                break
            if 'dd' in spectra:
                for index, name in enumerate(names['dd']):
                  cl['dd'][name][ell] = dcl[self.hr.index_ct_dd+index]
            if 'll' in spectra:
                for index, name in enumerate(names['ll']):
                  cl['ll'][name][ell] = dcl[self.hr.index_ct_ll+index]
            if 'dl' in spectra:
                for index, name in enumerate(names['dl']):
                  cl['dl'][name][ell] = dcl[self.hr.index_ct_dl+index]
            if 'td' in spectra:
                cl['td'][ell] = dcl[self.hr.index_ct_td]
            if 'tl' in spectra:
                cl['tl'][ell] = dcl[self.hr.index_ct_tl]
        cl['ell'] = np.arange(lmax+1)

        free(dcl)
        for index_md in range(self.hr.md_size):
            free(cl_md[index_md])
            free(cl_md_ic[index_md])
        free(cl_md)
        free(cl_md_ic)

        # This has to be delayed until AFTER freeing the memory
        if not success:
          raise CosmoSevereError(self.hr.error_message)
        return cl

    def z_of_r (self, z):
        self.compute(["background"])
        cdef int last_index=0 #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        r = np.zeros(len(zarr),'float64')
        dzdr = np.zeros(len(zarr),'float64')

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        i = 0
        for redshift in zarr:

            if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
                free(pvecback) #manual free due to error
                raise CosmoSevereError(self.ba.error_message)

            # store r
            r[i] = pvecback[self.ba.index_bg_conf_distance]
            # store dz/dr = H
            dzdr[i] = pvecback[self.ba.index_bg_H]

            i += 1

        free(pvecback)

        return (r[0], dzdr[0]) if np.isscalar(z) else (r,dzdr)

    def luminosity_distance(self, z):
        """
        luminosity_distance(z)
        """
        self.compute(["background"])

        cdef int last_index = 0  # junk

        zarr = np.atleast_1d(z).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        lum_distance = np.empty_like(zarr)
        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba, redshift, long_info,
                  inter_normal, &last_index, pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          lum_distance[iz] = pvecback[self.ba.index_bg_lum_distance]
        free(pvecback)

        return (lum_distance[0] if np.isscalar(z) else lum_distance)

    # Gives the total matter pk for a given (k,z)
    def pk(self,double k,double z):
        """
        Gives the total matter pk (in Mpc**3) for a given k (in 1/Mpc) and z (will be non linear if requested to Class, linear otherwise)

        .. note::

            there is an additional check that output contains `mPk`,
            because otherwise a segfault will occur

        """
        self.compute(["fourier"])

        cdef double pk

        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. You must add mPk to the list of outputs.")

        if (self.fo.method == nl_none):
            if fourier_pk_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_linear,k,z,self.fo.index_pk_m,&pk,NULL)==_FAILURE_:
                raise CosmoSevereError(self.fo.error_message)
        else:
            if fourier_pk_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_nonlinear,k,z,self.fo.index_pk_m,&pk,NULL)==_FAILURE_:
                raise CosmoSevereError(self.fo.error_message)

        return pk

    # Gives the cdm+b pk for a given (k,z)
    def pk_cb(self,double k,double z):
        """
        Gives the cdm+b pk (in Mpc**3) for a given k (in 1/Mpc) and z (will be non linear if requested to Class, linear otherwise)

        .. note::

            there is an additional check that output contains `mPk`,
            because otherwise a segfault will occur

        """
        self.compute(["fourier"])

        cdef double pk_cb

        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. You must add mPk to the list of outputs.")
        if (self.fo.has_pk_cb == _FALSE_):
            raise CosmoSevereError("P_cb not computed (probably because there are no massive neutrinos) so you cannot ask for it")

        if (self.fo.method == nl_none):
            if fourier_pk_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_linear,k,z,self.fo.index_pk_cb,&pk_cb,NULL)==_FAILURE_:
                raise CosmoSevereError(self.fo.error_message)
        else:
            if fourier_pk_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_nonlinear,k,z,self.fo.index_pk_cb,&pk_cb,NULL)==_FAILURE_:
                raise CosmoSevereError(self.fo.error_message)

        return pk_cb

    # Gives the total matter pk for a given (k,z)
    def pk_lin(self,double k,double z):
        """
        Gives the linear total matter pk (in Mpc**3) for a given k (in 1/Mpc) and z

        .. note::

            there is an additional check that output contains `mPk`,
            because otherwise a segfault will occur

        """
        self.compute(["fourier"])

        cdef double pk_lin

        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. You must add mPk to the list of outputs.")

        if fourier_pk_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_linear,k,z,self.fo.index_pk_m,&pk_lin,NULL)==_FAILURE_:
            raise CosmoSevereError(self.fo.error_message)

        return pk_lin

    # Gives the cdm+b pk for a given (k,z)
    def pk_cb_lin(self,double k,double z):
        """
        Gives the linear cdm+b pk (in Mpc**3) for a given k (in 1/Mpc) and z

        .. note::

            there is an additional check that output contains `mPk`,
            because otherwise a segfault will occur

        """
        self.compute(["fourier"])

        cdef double pk_cb_lin

        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. You must add mPk to the list of outputs.")

        if (self.fo.has_pk_cb == _FALSE_):
            raise CosmoSevereError("P_cb not computed by CLASS (probably because there are no massive neutrinos)")

        if fourier_pk_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_linear,k,z,self.fo.index_pk_cb,&pk_cb_lin,NULL)==_FAILURE_:
            raise CosmoSevereError(self.fo.error_message)

        return pk_cb_lin

    # Gives the total matter pk for a given (k,z)
    def pk_numerical_nw(self,double k,double z):
        """
        Gives the nowiggle (smoothed) linear total matter pk (in Mpc**3) for a given k (in 1/Mpc) and z

        .. note::

            there is an additional check that `numerical_nowiggle` was set to `yes`,
            because otherwise a segfault will occur

        """
        self.compute(["fourier"])

        cdef double pk_numerical_nw

        if (self.fo.has_pk_numerical_nowiggle == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. You must set `numerical_nowiggle` to `yes` in input")

        if fourier_pk_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_numerical_nowiggle,k,z,0,&pk_numerical_nw,NULL)==_FAILURE_:
            raise CosmoSevereError(self.fo.error_message)

        return pk_numerical_nw

    # Gives the approximate analytic nowiggle power spectrum for a given k at z=0
    def pk_analytic_nw(self,double k):
        """
        Gives the linear total matter pk (in Mpc**3) for a given k (in 1/Mpc) and z

        .. note::

            there is an additional check that `analytic_nowiggle` was set to `yes`,
            because otherwise a segfault will occur

        """
        self.compute(["fourier"])

        cdef double pk_analytic_nw

        if (self.fo.has_pk_analytic_nowiggle == _FALSE_):
            raise CosmoSevereError("No analytic nowiggle spectrum computed. You must set `analytic_nowiggle` to `yes` in input")

        if fourier_pk_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_analytic_nowiggle,k,0.,self.fo.index_pk_m,&pk_analytic_nw,NULL)==_FAILURE_:
            raise CosmoSevereError(self.fo.error_message)

        return pk_analytic_nw

    def get_pk(self, np.ndarray[DTYPE_t,ndim=3] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, int mu_size):
        """ Fast function to get the power spectrum on a k and z array """
        self.compute(["fourier"])

        cdef np.ndarray[DTYPE_t, ndim=3] pk = np.zeros((k_size,z_size,mu_size),'float64')
        cdef int index_k, index_z, index_mu

        for index_k in range(k_size):
            for index_z in range(z_size):
                for index_mu in range(mu_size):
                    pk[index_k,index_z,index_mu] = self.pk(k[index_k,index_z,index_mu],z[index_z])
        return pk

    def get_pk_cb(self, np.ndarray[DTYPE_t,ndim=3] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, int mu_size):
        """ Fast function to get the power spectrum on a k and z array """
        self.compute(["fourier"])

        cdef np.ndarray[DTYPE_t, ndim=3] pk_cb = np.zeros((k_size,z_size,mu_size),'float64')
        cdef int index_k, index_z, index_mu

        for index_k in range(k_size):
            for index_z in range(z_size):
                for index_mu in range(mu_size):
                    pk_cb[index_k,index_z,index_mu] = self.pk_cb(k[index_k,index_z,index_mu],z[index_z])
        return pk_cb

    def get_pk_lin(self, np.ndarray[DTYPE_t,ndim=3] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, int mu_size):
        """ Fast function to get the linear power spectrum on a k and z array """
        self.compute(["fourier"])

        cdef np.ndarray[DTYPE_t, ndim=3] pk = np.zeros((k_size,z_size,mu_size),'float64')
        cdef int index_k, index_z, index_mu

        for index_k in range(k_size):
            for index_z in range(z_size):
                for index_mu in range(mu_size):
                    pk[index_k,index_z,index_mu] = self.pk_lin(k[index_k,index_z,index_mu],z[index_z])
        return pk

    def get_pk_cb_lin(self, np.ndarray[DTYPE_t,ndim=3] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, int mu_size):
        """ Fast function to get the linear power spectrum on a k and z array """
        self.compute(["fourier"])

        cdef np.ndarray[DTYPE_t, ndim=3] pk_cb = np.zeros((k_size,z_size,mu_size),'float64')
        cdef int index_k, index_z, index_mu

        for index_k in range(k_size):
            for index_z in range(z_size):
                for index_mu in range(mu_size):
                    pk_cb[index_k,index_z,index_mu] = self.pk_cb_lin(k[index_k,index_z,index_mu],z[index_z])
        return pk_cb

    def get_pk_all(self, k, z, nonlinear = True, cdmbar = False, z_axis_in_k_arr = 0, interpolation_kind='cubic'):
        """ General function to get the P(k,z) for ARBITRARY shapes of k,z
            Additionally, it includes the functionality of selecting wether to use the non-linear parts or not,
            and wether to use the cdm baryon power spectrum only
            For Multi-Dimensional k-arrays, it assumes that one of the dimensions is the z-axis
            This is handled by the z_axis_in_k_arr integer, as described in the source code """
        self.compute(["fourier"])

        # z_axis_in_k_arr specifies the integer position of the z_axis wihtin the n-dimensional k_arr
        # Example: 1-d k_array -> z_axis_in_k_arr = 0
        # Example: 3-d k_array with z_axis being the first axis -> z_axis_in_k_arr = 0
        # Example: 3-d k_array with z_axis being the last axis  -> z_axis_in_k_arr = 2

        # 1) Define some utilities
        # Is the user asking for a valid cdmbar?
        ispkcb = cdmbar and not (self.ba.Omega0_ncdm_tot == 0.)

        # Allocate the temporary k/pk array used during the interaction with the underlying C code
        cdef np.float64_t[::1] pk_out = np.empty(self.fo.k_size, dtype='float64')
        k_out = np.asarray(<np.float64_t[:self.fo.k_size]> self.fo.k)

        # Define a function that can write the P(k) for a given z into the pk_out array
        def _write_pk(z,islinear,ispkcb):
          if fourier_pk_at_z(&self.ba,&self.fo,linear,(pk_linear if islinear else pk_nonlinear),z,(self.fo.index_pk_cb if ispkcb else self.fo.index_pk_m),&pk_out[0],NULL)==_FAILURE_:
              raise CosmoSevereError(self.fo.error_message)

        # Check what kind of non-linear redshift there is
        if nonlinear:
          if self.fo.index_tau_min_nl == 0:
            z_max_nonlinear = np.inf
          else:
            z_max_nonlinear = self.z_of_tau(self.fo.tau[self.fo.index_tau_min_nl])
        else:
          z_max_nonlinear = -1.

        # Only get the nonlinear function where the nonlinear treatment is possible
        def _islinear(z):
          if z > z_max_nonlinear or (self.fo.method == nl_none):
            return True
          else:
            return False

        # A simple wrapper for writing the P(k) in the given location and interpolating it
        def _interpolate_pk_at_z(karr,z):
          _write_pk(z,_islinear(z),ispkcb)
          interp_func = interp1d(k_out,np.log(pk_out),kind=interpolation_kind,copy=True)
          return np.exp(interp_func(karr))

        # 2) Check if z array, or z value
        if not isinstance(z,(list,np.ndarray)):
            # Only single z value was passed -> k could still be an array of arbitrary dimension
            if not isinstance(k,(list,np.ndarray)):
                # Only single z value AND only single k value -> just return a value
                # This iterates over ALL remaining dimensions
                return ((self.pk_cb if ispkcb else self.pk) if not _islinear(z) else (self.pk_cb_lin if ispkcb else self.pk_lin))(k,z)
            else:
                k_arr = np.array(k)
                result = _interpolate_pk_at_z(k_arr,z)
                return result

        # 3) An array of z values was passed
        k_arr = np.array(k)
        z_arr = np.array(z)
        if( z_arr.ndim != 1 ):
            raise CosmoSevereError("Can only parse one-dimensional z-arrays, not multi-dimensional")

        if( k_arr.ndim > 1 ):
            # 3.1) If there is a multi-dimensional k-array of EQUAL lenghts
            out_pk = np.empty(np.shape(k_arr))
            # Bring the z_axis to the front
            k_arr = np.moveaxis(k_arr, z_axis_in_k_arr, 0)
            out_pk = np.moveaxis(out_pk, z_axis_in_k_arr, 0)
            if( len(k_arr) != len(z_arr) ):
                raise CosmoSevereError("Mismatching array lengths of the z-array")
            for index_z in range(len(z_arr)):
                out_pk[index_z] = _interpolate_pk_at_z(k_arr[index_z],z[index_z])
            # Move the z_axis back into position
            k_arr = np.moveaxis(k_arr, 0, z_axis_in_k_arr)
            out_pk = np.moveaxis(out_pk, 0, z_axis_in_k_arr)
            return out_pk
        else:
            # 3.2) If there is a multi-dimensional k-array of UNEQUAL lenghts
            if isinstance(k_arr[0],(list,np.ndarray)):
                # A very special thing happened: The user passed a k array with UNEQUAL lengths of k arrays for each z
                out_pk = []
                for index_z in range(len(z_arr)):
                    k_arr_at_z = np.array(k_arr[index_z])
                    out_pk_at_z = _interpolate_pk_at_z(k_arr_at_z,z[index_z])
                    out_pk.append(out_pk_at_z)
                return out_pk

            # 3.3) If there is a single-dimensional k-array
            # The user passed a z-array, but only a 1-d k array
            # Assume thus, that the k array should be reproduced for all z
            out_pk = np.empty((len(z_arr),len(k_arr)))
            for index_z in range(len(z_arr)):
                out_pk[index_z] = _interpolate_pk_at_z(k_arr,z_arr[index_z])
            return out_pk

    #################################
    # Gives a grid of values of matter and/or cb power spectrum, together with the vectors of corresponding k and z values
    def get_pk_and_k_and_z(self, nonlinear=True, only_clustering_species = False, h_units=False):
        """
        Returns a grid of matter power spectrum values and the z and k
        at which it has been fully computed. Useful for creating interpolators.

        Parameters
        ----------
        nonlinear : bool
                Whether the returned power spectrum values are linear or non-linear (default)
        only_clustering_species : bool
                Whether the returned power spectrum is for galaxy clustering and excludes massive neutrinos, or always includes everything (default)
        h_units : bool
                Whether the units of k in output are h/Mpc or 1/Mpc (default)

        Returns
        -------
        pk : grid of power spectrum values, pk[index_k,index_z]
        k : vector of k values, k[index_k] (in units of 1/Mpc by default, or h/Mpc when setting h_units to True)
        z : vector of z values, z[index_z]
        """
        self.compute(["fourier"])

        cdef np.ndarray[DTYPE_t,ndim=2] pk = np.zeros((self.fo.k_size_pk, self.fo.ln_tau_size),'float64')
        cdef np.ndarray[DTYPE_t,ndim=1] k = np.zeros((self.fo.k_size_pk),'float64')
        cdef np.ndarray[DTYPE_t,ndim=1] z = np.zeros((self.fo.ln_tau_size),'float64')
        cdef int index_k, index_tau, index_pk
        cdef double z_max_nonlinear, z_max_requested
        # consistency checks

        if self.fo.has_pk_matter == False:
            raise CosmoSevereError("You ask classy to return an array of P(k,z) values, but the input parameters sent to CLASS did not require any P(k,z) calculations; add 'mPk' in 'output'")

        if nonlinear == True and self.fo.method == nl_none:
            raise CosmoSevereError("You ask classy to return an array of nonlinear P(k,z) values, but the input parameters sent to CLASS did not require any non-linear P(k,z) calculations; add e.g. 'halofit' or 'HMcode' in 'nonlinear'")

        # check wich type of P(k) to return (total or clustering only, i.e. without massive neutrino contribution)
        if (only_clustering_species == True):
            index_pk = self.fo.index_pk_cluster
        else:
            index_pk = self.fo.index_pk_total

        # get list of redshifts
        # the ln(times) of interest are stored in self.fo.ln_tau[index_tau]
        # For nonlinear, we have to additionally cut out the linear values

        if self.fo.ln_tau_size == 1:
            raise CosmoSevereError("You ask classy to return an array of P(k,z) values, but the input parameters sent to CLASS did not require any P(k,z) calculations for z>0; pass either a list of z in 'z_pk' or one non-zero value in 'z_max_pk'")
        else:
            for index_tau in range(self.fo.ln_tau_size):
                if index_tau == self.fo.ln_tau_size-1:
                    z[index_tau] = 0.
                else:
                    z[index_tau] = self.z_of_tau(np.exp(self.fo.ln_tau[index_tau]))

        # check consitency of the list of redshifts

        if nonlinear == True:
            # Check highest value of z at which nl corrections could be computed.
            # In the table tau_sampling it corresponds to index: self.fo.index_tau_min_nl
            z_max_nonlinear = self.z_of_tau(self.fo.tau[self.fo.index_tau_min_nl])

            # Check highest value of z in the requested output.
            z_max_requested = z[0]

            # The first z must be larger or equal to the second one, that is,
            # the first index must be smaller or equal to the second one.
            # If not, raise and error.
            if (z_max_requested > z_max_nonlinear and self.fo.index_tau_min_nl>0):
                raise CosmoSevereError("get_pk_and_k_and_z() is trying to return P(k,z) up to z_max=%e (the redshift range of computed pk); but the input parameters sent to CLASS (in particular ppr->nonlinear_min_k_max=%e) were such that the non-linear P(k,z) could only be consistently computed up to z=%e; increase the precision parameter 'nonlinear_min_k_max', or only obtain the linear pk"%(z_max_requested,self.pr.nonlinear_min_k_max,z_max_nonlinear))

        # get list of k

        if h_units:
            units=1./self.ba.h
        else:
            units=1

        for index_k in range(self.fo.k_size_pk):
            k[index_k] = self.fo.k[index_k]*units

        # get P(k,z) array

        for index_tau in range(self.fo.ln_tau_size):
            for index_k in range(self.fo.k_size_pk):
                if nonlinear == True:
                    pk[index_k, index_tau] = np.exp(self.fo.ln_pk_nl[index_pk][index_tau * self.fo.k_size + index_k])
                else:
                    pk[index_k, index_tau] = np.exp(self.fo.ln_pk_l[index_pk][index_tau * self.fo.k_size + index_k])

        return pk, k, z

    #################################
    # Gives a grid of each transfer functions arranged in a dictionary, together with the vectors of corresponding k and z values
    def get_transfer_and_k_and_z(self, output_format='class', h_units=False):
        """
        Returns a dictionary of grids of density and/or velocity transfer function values and the z and k at which it has been fully computed.
        Useful for creating interpolators.
        When setting CLASS input parameters, include at least one of 'dTk' (for density transfer functions) or 'vTk' (for velocity transfer functions).
        Following the default output_format='class', all transfer functions will be normalised to 'curvature R=1' at initial time
        (and not 'curvature R = -1/k^2' like in CAMB).
        You may switch to output_format='camb' for the CAMB definition and normalisation of transfer functions.
        (Then, 'dTk' must be in the input: the CAMB format only outputs density transfer functions).
        When sticking to output_format='class', you also get the newtonian metric fluctuations phi and psi.
        If you set the CLASS input parameter 'extra_metric_transfer_functions' to 'yes',
        you get additional metric fluctuations in the synchronous and N-body gauges.

        Parameters
        ----------
        output_format  : ('class' or 'camb')
                Format transfer functions according to CLASS (default) or CAMB
        h_units : bool
                Whether the units of k in output are h/Mpc or 1/Mpc (default)

        Returns
        -------
        tk : dictionary containing all transfer functions.
                For instance, the grid of values of 'd_c' (= delta_cdm) is available in tk['d_c']
                All these grids have indices [index_k,index,z], for instance tk['d_c'][index_k,index,z]
        k : vector of k values (in units of 1/Mpc by default, or h/Mpc when setting h_units to True)
        z : vector of z values
        """
        self.compute(["transfer"])

        cdef np.ndarray[DTYPE_t,ndim=1] k = np.zeros((self.pt.k_size_pk),'float64')
        cdef np.ndarray[DTYPE_t,ndim=1] z = np.zeros((self.pt.ln_tau_size),'float64')
        cdef int index_k, index_tau
        cdef char * titles
        cdef double * data
        cdef file_format outf

        # consistency checks
        if (self.pt.has_density_transfers == False) and (self.pt.has_velocity_transfers == False):
            raise CosmoSevereError("You ask classy to return transfer functions, but the input parameters sent to CLASS did not require any T(k,z) calculations; add 'dTk' and/or 'vTk' in 'output'")

        index_md = self.pt.index_md_scalars;

        if (self.pt.ic_size[index_md] > 1):
            raise CosmoSevereError("For simplicity, get_transfer_and_k_and_z() has been written assuming only adiabatic initial conditions. You need to write the generalisation to cases with multiple initial conditions.")

        # check out put format
        if output_format == 'camb':
            outf = camb_format
        else:
            outf = class_format

        # check name and number of trnasfer functions computed ghy CLASS

        titles = <char*>calloc(_MAXTITLESTRINGLENGTH_,sizeof(char))

        if perturbations_output_titles(&self.ba,&self.pt, outf, titles)==_FAILURE_:
            free(titles) # manual free due to error
            raise CosmoSevereError(self.pt.error_message)

        tmp = <bytes> titles
        tmp = str(tmp.decode())
        names = tmp.split("\t")[:-1]

        free(titles)

        number_of_titles = len(names)

        # get list of redshifts
        # the ln(times) of interest are stored in self.fo.ln_tau[index_tau]

        if self.pt.ln_tau_size == 1:
            raise CosmoSevereError("You ask classy to return an array of T_x(k,z) values, but the input parameters sent to CLASS did not require any transfer function calculations for z>0; pass either a list of z in 'z_pk' or one non-zero value in 'z_max_pk'")
        else:
            for index_tau in range(self.pt.ln_tau_size):
                if index_tau == self.pt.ln_tau_size-1:
                    z[index_tau] = 0.
                else:
                    z[index_tau] = self.z_of_tau(np.exp(self.pt.ln_tau[index_tau]))

        # get list of k

        if h_units:
            units=1./self.ba.h
        else:
            units=1

        k_size = self.pt.k_size_pk
        for index_k in range(k_size):
            k[index_k] = self.pt.k[index_md][index_k]*units

        # create output dictionary

        tk = {}
        for index_type,name in enumerate(names):
            if index_type > 0:
                tk[name] = np.zeros((k_size, len(z)),'float64')

        # allocate the vector in wich the transfer functions will be stored temporarily for all k and types at a given z
        data = <double*>malloc(sizeof(double)*number_of_titles*self.pt.k_size[index_md])

        # get T(k,z) array

        for index_tau in range(len(z)):
            if perturbations_output_data_at_index_tau(&self.ba, &self.pt, outf, index_tau, number_of_titles, data)==_FAILURE_:
                free(data) # manual free due to error
                raise CosmoSevereError(self.pt.error_message)

            for index_type,name in enumerate(names):
                if index_type > 0:
                    for index_k in range(k_size):
                        tk[name][index_k, index_tau] = data[index_k*number_of_titles+index_type]

        free(data)
        return tk, k, z

    #################################
    # Gives a grid of values of the power spectrum of the quantity [k^2*(phi+psi)/2], where (phi+psi)/2 is the Weyl potential, together with the vectors of corresponding k and z values
    def get_Weyl_pk_and_k_and_z(self, nonlinear=False, h_units=False):
        """
        Returns a grid of Weyl potential (phi+psi) power spectrum values and the z and k
        at which it has been fully computed. Useful for creating interpolators.
        Note that this function just calls get_pk_and_k_and_z and corrects the output
        by the ratio of transfer functions [(phi+psi)/d_m]^2.

        Parameters
        ----------
        nonlinear : bool
                Whether the returned power spectrum values are linear or non-linear (default)
        h_units : bool
                Whether the units of k in output are h/Mpc or 1/Mpc (default)

        Returns
        -------
        Weyl_pk : grid of Weyl potential (phi+psi) spectrum values, Weyl_pk[index_k,index_z]
        k : vector of k values, k[index_k] (in units of 1/Mpc by default, or h/Mpc when setting h_units to True)
        z : vector of z values, z[index_z]
        """
        self.compute(["fourier"])

        cdef np.ndarray[DTYPE_t,ndim=2] pk = np.zeros((self.fo.k_size_pk,self.fo.ln_tau_size),'float64')
        cdef np.ndarray[DTYPE_t,ndim=1] z = np.zeros((self.fo.ln_tau_size),'float64')
        cdef np.ndarray[DTYPE_t,ndim=2] k4 = np.zeros((self.fo.k_size_pk, self.fo.ln_tau_size),'float64')
        cdef np.ndarray[DTYPE_t,ndim=2] phi = np.zeros((self.fo.k_size_pk, self.fo.ln_tau_size),'float64')
        cdef np.ndarray[DTYPE_t,ndim=2] psi = np.zeros((self.fo.k_size_pk, self.fo.ln_tau_size),'float64')
        cdef np.ndarray[DTYPE_t,ndim=2] d_m = np.zeros((self.fo.k_size_pk, self.fo.ln_tau_size),'float64')
        cdef np.ndarray[DTYPE_t,ndim=2] Weyl_pk = np.zeros((self.fo.k_size_pk, self.fo.ln_tau_size),'float64')

        cdef bint input_nonlinear = nonlinear
        cdef bint input_h_units = h_units

        cdef int index_z

        # get total matter power spectrum
        pk, k, z = self.get_pk_and_k_and_z(nonlinear=input_nonlinear, only_clustering_species = False, h_units=input_h_units)

        # get transfer functions
        tk_and_k_and_z = {}
        tk_and_k_and_z, k, z = self.get_transfer_and_k_and_z(output_format='class',h_units=input_h_units)
        phi = tk_and_k_and_z['phi']
        psi = tk_and_k_and_z['psi']
        d_m = tk_and_k_and_z['d_m']

        # get an array containing k**4 (same for all redshifts)
        for index_z in range(self.fo.ln_tau_size):
            k4[:,index_z] = k**4

        # rescale total matter power spectrum to get the Weyl power spectrum times k**4
        # (the latter factor is just a convention. Since there is a factor k**2 in the Poisson equation,
        # this rescaled Weyl spectrum has a shape similar to the matter power spectrum).
        Weyl_pk = pk * ((phi+psi)/2./d_m)**2 * k4

        return Weyl_pk, k, z

    #################################
    # Gives sigma(R,z) for a given (R,z)
    def sigma(self,R,z, h_units = False):
        """
        Gives sigma (total matter) for a given R and z
        (R is the radius in units of Mpc, so if R=8/h this will be the usual sigma8(z).
         This is unless h_units is set to true, in which case R is the radius in units of Mpc/h,
         and R=8 corresponds to sigma8(z))

        .. note::

            there is an additional check to verify whether output contains `mPk`,
            and whether k_max > ...
            because otherwise a segfault will occur

        """
        self.compute(["fourier"])

        cdef double sigma

        zarr = np.atleast_1d(z).astype(np.float64)
        Rarr = np.atleast_1d(R).astype(np.float64)

        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. In order to get sigma(R,z) you must add mPk to the list of outputs.")

        if (self.pt.k_max_for_pk < self.ba.h):
            raise CosmoSevereError("In order to get sigma(R,z) you must set 'P_k_max_h/Mpc' to 1 or bigger, in order to have k_max > 1 h/Mpc.")

        R_in_Mpc = (Rarr if not h_units else Rarr/self.ba.h)

        pairs = np.array(np.meshgrid(zarr,R_in_Mpc)).T.reshape(-1,2)

        sigmas = np.empty(pairs.shape[0])
        for ip, pair in enumerate(pairs):
          if fourier_sigmas_at_z(&self.pr,&self.ba,&self.fo,pair[1],pair[0],self.fo.index_pk_m,out_sigma,&sigma)==_FAILURE_:
              raise CosmoSevereError(self.fo.error_message)
          sigmas[ip] = sigma

        return (sigmas[0] if (np.isscalar(z) and np.isscalar(R)) else np.squeeze(sigmas.reshape(len(zarr),len(Rarr))))

    # Gives sigma_cb(R,z) for a given (R,z)
    def sigma_cb(self,double R,double z, h_units = False):
        """
        Gives sigma (cdm+b) for a given R and z
        (R is the radius in units of Mpc, so if R=8/h this will be the usual sigma8(z)
         This is unless h_units is set to true, in which case R is the radius in units of Mpc/h,
         and R=8 corresponds to sigma8(z))

        .. note::

            there is an additional check to verify whether output contains `mPk`,
            and whether k_max > ...
            because otherwise a segfault will occur

        """
        self.compute(["fourier"])

        cdef double sigma_cb

        zarr = np.atleast_1d(z).astype(np.float64)
        Rarr = np.atleast_1d(R).astype(np.float64)

        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. In order to get sigma(R,z) you must add mPk to the list of outputs.")

        if (self.fo.has_pk_cb == _FALSE_):
            raise CosmoSevereError("sigma_cb not computed by CLASS (probably because there are no massive neutrinos)")

        if (self.pt.k_max_for_pk < self.ba.h):
            raise CosmoSevereError("In order to get sigma(R,z) you must set 'P_k_max_h/Mpc' to 1 or bigger, in order to have k_max > 1 h/Mpc.")

        R_in_Mpc = (Rarr if not h_units else Rarr/self.ba.h)

        pairs = np.array(np.meshgrid(zarr,R_in_Mpc)).T.reshape(-1,2)

        sigmas_cb = np.empty(pairs.shape[0])
        for ip, pair in enumerate(pairs):
          if fourier_sigmas_at_z(&self.pr,&self.ba,&self.fo,R,z,self.fo.index_pk_cb,out_sigma,&sigma_cb)==_FAILURE_:
            raise CosmoSevereError(self.fo.error_message)
          sigmas_cb[ip] = sigma_cb

        return (sigmas_cb[0] if (np.isscalar(z) and np.isscalar(R)) else np.squeeze(sigmas_cb.reshape(len(zarr),len(Rarr))))

    # Gives effective logarithmic slope of P_L(k,z) (total matter) for a given (k,z)
    def pk_tilt(self,double k,double z):
        """
        Gives effective logarithmic slope of P_L(k,z) (total matter) for a given k and z
        (k is the wavenumber in units of 1/Mpc, z is the redshift, the output is dimensionless)

        .. note::

            there is an additional check to verify whether output contains `mPk` and whether k is in the right range

        """
        self.compute(["fourier"])

        cdef double pk_tilt

        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. In order to get pk_tilt(k,z) you must add mPk to the list of outputs.")

        if (k < self.fo.k[1] or k > self.fo.k[self.fo.k_size-2]):
            raise CosmoSevereError("In order to get pk_tilt at k=%e 1/Mpc, you should compute P(k,z) in a wider range of k's"%k)

        if fourier_pk_tilt_at_k_and_z(&self.ba,&self.pm,&self.fo,pk_linear,k,z,self.fo.index_pk_total,&pk_tilt)==_FAILURE_:
            raise CosmoSevereError(self.fo.error_message)

        return pk_tilt

    def age(self):
        self.compute(["background"])
        return self.ba.age

    def h(self):
        return self.ba.h

    def n_s(self):
        return self.pm.n_s

    def tau_reio(self):
        self.compute(["thermodynamics"])
        return self.th.tau_reio

    def Omega_m(self):
        return self.ba.Omega0_m

    def Omega_r(self):
        return self.ba.Omega0_r

    def theta_s_100(self):
        self.compute(["thermodynamics"])
        return 100.*self.th.rs_rec/self.th.da_rec/(1.+self.th.z_rec)

    def theta_star_100(self):
        self.compute(["thermodynamics"])
        return 100.*self.th.rs_star/self.th.da_star/(1.+self.th.z_star)

    def Omega_Lambda(self):
        return self.ba.Omega0_lambda

    def Omega_g(self):
        return self.ba.Omega0_g

    def Omega_b(self):
        return self.ba.Omega0_b

    def omega_b(self):
        return self.ba.Omega0_b * self.ba.h * self.ba.h

    def Neff(self):
        self.compute(["background"])
        return self.ba.Neff

    def k_eq(self):
        self.compute(["background"])
        return self.ba.a_eq*self.ba.H_eq

    def z_eq(self):
        self.compute(["background"])
        return 1./self.ba.a_eq-1.

    def sigma8(self):
        self.compute(["fourier"])
        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. In order to get sigma8, you must add mPk to the list of outputs.")
        return self.fo.sigma8[self.fo.index_pk_m]

    def S8(self):
        return self.sigma8()*np.sqrt(self.Omega_m()/0.3)

    #def neff(self):
    #    self.compute(["harmonic"])
    #    return self.hr.neff

    def sigma8_cb(self):
        self.compute(["fourier"])
        if (self.pt.has_pk_matter == _FALSE_):
            raise CosmoSevereError("No power spectrum computed. In order to get sigma8_cb, you must add mPk to the list of outputs.")
        return self.fo.sigma8[self.fo.index_pk_cb]

    def rs_drag(self):
        self.compute(["thermodynamics"])
        return self.th.rs_d

    def z_reio(self):
        self.compute(["thermodynamics"])
        return self.th.z_reio

    def angular_distance(self, z):
        """
        angular_distance(z)

        Return the angular diameter distance (exactly, the quantity defined by Class
        as index_bg_ang_distance in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        D_A = np.empty_like(zarr)
        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #Manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          D_A[iz] = pvecback[self.ba.index_bg_ang_distance]

        free(pvecback)

        return (D_A[0] if np.isscalar(z) else D_A)

    #################################
    # Get angular diameter distance of object at z2 as seen by observer at z1,
    def angular_distance_from_to(self, z1, z2):
        """
        angular_distance_from_to(z)

        Return the angular diameter distance of object at z2 as seen by observer at z1,
        that is, sin_K((chi2-chi1)*np.sqrt(|k|))/np.sqrt(|k|)/(1+z2).
        If z1>z2 returns zero.

        Parameters
        ----------
        z1 : float
                Observer redshift
        z2 : float
                Source redshift

        Returns
        -------
        d_A(z1,z2) in Mpc
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        if z1>=z2:
            return 0.

        else:
            pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

            if background_at_z(&self.ba,z1,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
                free(pvecback) #manual free due to error
                raise CosmoSevereError(self.ba.error_message)

            # This is the comoving distance to object at z1
            chi1 = pvecback[self.ba.index_bg_conf_distance]

            if background_at_z(&self.ba,z2,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
                free(pvecback) #manual free due to error
                raise CosmoSevereError(self.ba.error_message)

            # This is the comoving distance to object at z2
            chi2 = pvecback[self.ba.index_bg_conf_distance]

            free(pvecback)

            if self.ba.K == 0:
                return (chi2-chi1)/(1+z2)
            elif self.ba.K > 0:
                return np.sin(np.sqrt(self.ba.K)*(chi2-chi1))/np.sqrt(self.ba.K)/(1+z2)
            elif self.ba.K < 0:
                return np.sinh(np.sqrt(-self.ba.K)*(chi2-chi1))/np.sqrt(-self.ba.K)/(1+z2)

    def comoving_distance(self, z):
        """
        comoving_distance(z)

        Return the comoving distance

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        r = np.empty_like(zarr)
        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          r[iz] = pvecback[self.ba.index_bg_conf_distance]

        free(pvecback)

        return (r[0] if np.isscalar(z) else r)

    def scale_independent_growth_factor(self, z):
        """
        scale_independent_growth_factor(z)

        Return the scale invariant growth factor D(a) for CDM perturbations
        (exactly, the quantity defined by Class as index_bg_D in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        D = np.empty_like(zarr)
        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          D[iz] = pvecback[self.ba.index_bg_D]

        free(pvecback)

        return (D[0] if np.isscalar(z) else D)

    def scale_independent_growth_factor_f(self, z):
        """
        scale_independent_growth_factor_f(z)

        Return the scale independent growth factor f(z)=d ln D / d ln a for CDM perturbations
        (exactly, the quantity defined by Class as index_bg_f in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        f = np.empty_like(zarr)
        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          f[iz] = pvecback[self.ba.index_bg_f]

        free(pvecback)

        return (f[0] if np.isscalar(z) else f)

    #################################
    def scale_dependent_growth_factor_f(self, k, z, h_units=False, nonlinear=False, Nz=20):
        """
        scale_dependent_growth_factor_f(k,z)

        Return the scale dependent growth factor
        f(z)= 1/2 * [d ln P(k,a) / d ln a]
            = - 0.5 * (1+z) * [d ln P(k,z) / d z]
        where P(k,z) is the total matter power spectrum

        Parameters
        ----------
        z : float
                Desired redshift
        k : float
                Desired wavenumber in 1/Mpc (if h_units=False) or h/Mpc (if h_units=True)
        """
        self.compute(["fourier"])

        # build array of z values at wich P(k,z) was pre-computed by class (for numerical derivative)
        # check that P(k,z) was stored at different zs
        if self.fo.ln_tau_size > 1:
            # check that input z is in stored range
            z_max = self.z_of_tau(np.exp(self.fo.ln_tau[0]))
            if (z<0) or (z>z_max):
                raise CosmoSevereError("You asked for f(k,z) at a redshift %e outside of the computed range [0,%e]"%(z,z_max))
            # create array of zs in growing z order (decreasing tau order)
            z_array = np.empty(self.fo.ln_tau_size)
            # first redshift is exactly zero
            z_array[0]=0.
            # next values can be inferred from ln_tau table
            if (self.fo.ln_tau_size>1):
                for i in range(1,self.fo.ln_tau_size):
                    z_array[i] = self.z_of_tau(np.exp(self.fo.ln_tau[self.fo.ln_tau_size-1-i]))
        else:
            raise CosmoSevereError("You asked for the scale-dependent growth factor: this requires numerical derivation of P(k,z) w.r.t z, and thus passing a non-zero input parameter z_max_pk")

        # if needed, convert k to units of 1/Mpc
        if h_units:
            k = k*self.ba.h

        # Allocate an array of P(k,z[...]) values
        Pk_array = np.empty_like(z_array)

        # Choose whether to use .pk() or .pk_lin()
        # The linear pk is in .pk_lin if nonlinear corrections have been computed, in .pk otherwise
        # The non-linear pk is in .pk if nonlinear corrections have been computed
        if nonlinear == False:
            if self.fo.method == nl_none:
                use_pk_lin = False
            else:
                use_pk_lin = True
        else:
            if self.fo.method == nl_none:
                raise CosmoSevereError("You asked for the scale-dependent growth factor of non-linear matter fluctuations, but you did not ask for non-linear calculations at all")
            else:
                use_pk_lin = False

        # Get P(k,z) and array P(k,z[...])
        if use_pk_lin == False:
            Pk = self.pk(k,z)
            for iz, zval in enumerate(z_array):
                Pk_array[iz] = self.pk(k,zval)
        else:
            Pk = self.pk_lin(k,z)
            for iz, zval in enumerate(z_array):
                Pk_array[iz] = self.pk_lin(k,zval)

        # Compute derivative (d ln P / d ln z)
        dPkdz = UnivariateSpline(z_array,Pk_array,s=0).derivative()(z)

        # Compute growth factor f
        f = -0.5*(1+z)*dPkdz/Pk

        return f

    #################################
    def scale_dependent_growth_factor_f_cb(self, k, z, h_units=False, nonlinear=False, Nz=20):
        """
        scale_dependent_growth_factor_f_cb(k,z)

        Return the scale dependent growth factor calculated from CDM+baryon power spectrum P_cb(k,z)
        f(z)= 1/2 * [d ln P_cb(k,a) / d ln a]
            = - 0.5 * (1+z) * [d ln P_cb(k,z) / d z]


        Parameters
        ----------
        z : float
                Desired redshift
        k : float
                Desired wavenumber in 1/Mpc (if h_units=False) or h/Mpc (if h_units=True)
        """

        # build array of z values at wich P_cb(k,z) was pre-computed by class (for numerical derivative)
        # check that P_cb(k,z) was stored at different zs
        if self.fo.ln_tau_size > 1:
            # check that input z is in stored range
            z_max = self.z_of_tau(np.exp(self.fo.ln_tau[0]))
            if (z<0) or (z>z_max):
                raise CosmoSevereError("You asked for f_cb(k,z) at a redshift %e outside of the computed range [0,%e]"%(z,z_max))
            # create array of zs in growing z order (decreasing tau order)
            z_array = np.empty(self.fo.ln_tau_size)
            # first redshift is exactly zero
            z_array[0]=0.
            # next values can be inferred from ln_tau table
            if (self.fo.ln_tau_size>1):
                for i in range(1,self.fo.ln_tau_size):
                    z_array[i] = self.z_of_tau(np.exp(self.fo.ln_tau[self.fo.ln_tau_size-1-i]))
        else:
            raise CosmoSevereError("You asked for the scale-dependent growth factor: this requires numerical derivation of P(k,z) w.r.t z, and thus passing a non-zero input parameter z_max_pk")

        # if needed, convert k to units of 1/Mpc
        if h_units:
            k = k*self.ba.h

        # Allocate an array of P(k,z[...]) values
        Pk_array = np.empty_like(z_array)

        # Choose whether to use .pk() or .pk_lin()
        # The linear pk is in .pk_lin if nonlinear corrections have been computed, in .pk otherwise
        # The non-linear pk is in .pk if nonlinear corrections have been computed
        if nonlinear == False:
            if self.fo.method == nl_none:
                use_pk_lin = False
            else:
                use_pk_lin = True
        else:
            if self.fo.method == nl_none:
                raise CosmoSevereError("You asked for the scale-dependent growth factor of non-linear matter fluctuations, but you did not ask for non-linear calculations at all")
            else:
                use_pk_lin = False

        # Get P(k,z) and array P(k,z[...])
        if use_pk_lin == False:
            Pk = self.pk(k,z)
            for iz, zval in enumerate(z_array):
                Pk_array[iz] = self.pk_cb(k,zval)
        else:
            Pk = self.pk_lin(k,z)
            for iz, zval in enumerate(z_array):
                Pk_array[iz] = self.pk_cb_lin(k,zval)

        # Compute derivative (d ln P / d ln z)
        dPkdz = UnivariateSpline(z_array,Pk_array,s=0).derivative()(z)

        # Compute growth factor f
        f = -0.5*(1+z)*dPkdz/Pk

        return f

    #################################
    # gives f(z)*sigma8(z) where f(z) is the scale-independent growth factor
    def scale_independent_f_sigma8(self, z):
        """
        scale_independent_f_sigma8(z)

        Return the scale independent growth factor f(z) multiplied by sigma8(z)

        Parameters
        ----------
        z : float
                Desired redshift

        Returns
        -------
        f(z)*sigma8(z) (dimensionless)
        """
        return self.scale_independent_growth_factor_f(z)*self.sigma(8,z,h_units=True)

    #################################
    # gives an estimation of f(z)*sigma8(z) at the scale of 8 h/Mpc, computed as (d sigma8/d ln a)
    def effective_f_sigma8(self, z, z_step=0.1):
        """
        effective_f_sigma8(z)

        Returns the time derivative of sigma8(z) computed as (d sigma8/d ln a)

        Parameters
        ----------
        z : float
                Desired redshift
        z_step : float
                Default step used for the numerical two-sided derivative. For z < z_step the step is reduced progressively down to z_step/10 while sticking to a double-sided derivative. For z< z_step/10 a single-sided derivative is used instead.

        Returns
        -------
        (d ln sigma8/d ln a)(z) (dimensionless)
        """

        # we need d sigma8/d ln a = - (d sigma8/dz)*(1+z)
        if hasattr(z, "__len__"):
          out_array = np.empty_like(z,dtype=np.float64)
          for iz, redshift in enumerate(z):
            out_array[iz] = self.effective_f_sigma8(redshift, z_step=z_step)
          return out_array

        # if possible, use two-sided derivative with default value of z_step
        if z >= z_step:
            return (self.sigma(8,z-z_step,h_units=True)-self.sigma(8,z+z_step,h_units=True))/(2.*z_step)*(1+z)
        else:
            # if z is between z_step/10 and z_step, reduce z_step to z, and then stick to two-sided derivative
            if (z > z_step/10.):
                z_step = z
                return (self.sigma(8,z-z_step,h_units=True)-self.sigma(8,z+z_step,h_units=True))/(2.*z_step)*(1+z)
            # if z is between 0 and z_step/10, use single-sided derivative with z_step/10
            else:
                z_step /=10
                return (self.sigma(8,z,h_units=True)-self.sigma(8,z+z_step,h_units=True))/z_step*(1+z)

    #################################
    # gives an estimation of f(z)*sigma8(z) at the scale of 8 h/Mpc, computed as (d sigma8/d ln a)
    def effective_f_sigma8_spline(self, z, Nz=20):
        """
        effective_f_sigma8_spline(z)

        Returns the time derivative of sigma8(z) computed as (d sigma8/d ln a)

        Parameters
        ----------
        z : float
                Desired redshift
        Nz : integer
                Number of values used to spline sigma8(z) in the range [z-0.1,z+0.1]

        Returns
        -------
        (d ln sigma8/d ln a)(z) (dimensionless)
        """
        self.compute(["fourier"])

        if hasattr(z, "__len__"):
          out_array = np.empty_like(z,dtype=np.float64)
          for iz, redshift in enumerate(z):
            out_array[iz] = self.effective_f_sigma8_spline(redshift, Nz=Nz)
          return out_array

        # we need d sigma8/d ln a = - (d sigma8/dz)*(1+z)
        if self.fo.ln_tau_size>0:
          z_max = self.z_of_tau(np.exp(self.fo.ln_tau[0]))
        else:
          z_max = 0

        if (z<0) or (z>z_max):
            raise CosmoSevereError("You asked for effective_f_sigma8 at a redshift %e outside of the computed range [0,%e]"%(z,z_max))

        if (z<0.1):
            z_array = np.linspace(0, 0.2, num = Nz)
        elif (z<z_max-0.1):
            z_array = np.linspace(z-0.1, z+0.1, num = Nz)
        else:
            z_array = np.linspace(z_max-0.2, z_max, num = Nz)

        sig8_array = self.sigma(8,z_array,h_units=True)
        return -CubicSpline(z_array,sig8_array).derivative()(z)*(1+z)

   #################################
    def z_of_tau(self, tau):
        """
        Redshift corresponding to a given conformal time.

        Parameters
        ----------
        tau : float
                Conformal time
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        tauarr = np.atleast_1d(tau).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        z = np.empty_like(tauarr)
        for itau, tauval in enumerate(tauarr):
          if background_at_tau(&self.ba,tauval,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          z[itau] = 1./pvecback[self.ba.index_bg_a]-1.

        free(pvecback)

        return (z[0] if np.isscalar(tau) else z)

    def Hubble(self, z):
        """
        Hubble(z)

        Return the Hubble rate (exactly, the quantity defined by Class as index_bg_H
        in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        H = np.empty_like(zarr)
        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          H[iz] = pvecback[self.ba.index_bg_H]

        free(pvecback)

        return (H[0] if np.isscalar(z) else H)

    def Om_m(self, z):
        """
        Omega_m(z)

        Return the matter density fraction (exactly, the quantity defined by Class as index_bg_Omega_m
        in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        Om_m = np.empty_like(zarr)
        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          Om_m[iz] = pvecback[self.ba.index_bg_Omega_m]

        free(pvecback)

        return (Om_m[0] if np.isscalar(z) else Om_m)

    def Om_b(self, z):
        """
        Omega_b(z)

        Return the baryon density fraction (exactly, the ratio of quantities defined by Class as
        index_bg_rho_b and index_bg_rho_crit in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

        Om_b = np.empty_like(zarr)
        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          Om_b[iz] = pvecback[self.ba.index_bg_rho_b]/pvecback[self.ba.index_bg_rho_crit]

        free(pvecback)

        return (Om_b[0] if np.isscalar(z) else Om_b)

    def Om_cdm(self, z):
        """
        Omega_cdm(z)

        Return the cdm density fraction (exactly, the ratio of quantities defined by Class as
        index_bg_rho_cdm and index_bg_rho_crit in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        Om_cdm = np.zeros_like(zarr)

        if self.ba.has_cdm == True:

          pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))
          for iz, redshift in enumerate(zarr):

              if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
                  free(pvecback) #manual free due to error
                  raise CosmoSevereError(self.ba.error_message)

              Om_cdm[iz] = pvecback[self.ba.index_bg_rho_cdm]/pvecback[self.ba.index_bg_rho_crit]

          free(pvecback)

        return (Om_cdm[0] if np.isscalar(z) else Om_cdm)

    def Om_ncdm(self, z):
        """
        Omega_ncdm(z)

        Return the ncdm density fraction (exactly, the ratio of quantities defined by Class as
        Sum_m [ index_bg_rho_ncdm1 + n ], with n=0...N_ncdm-1, and index_bg_rho_crit in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["background"])

        cdef int last_index #junk
        cdef double * pvecback

        zarr = np.atleast_1d(z).astype(np.float64)

        Om_ncdm = np.zeros_like(zarr)

        if self.ba.has_ncdm == True:

            pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))

            for iz, redshift in enumerate(zarr):
              if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
                  free(pvecback) #manual free due to error
                  raise CosmoSevereError(self.ba.error_message)

              rho_ncdm = 0.
              for n in range(self.ba.N_ncdm):
                  rho_ncdm += pvecback[self.ba.index_bg_rho_ncdm1+n]
              Om_ncdm[iz] = rho_ncdm/pvecback[self.ba.index_bg_rho_crit]

            free(pvecback)

        return (Om_ncdm[0] if np.isscalar(z) else Om_ncdm)

    def ionization_fraction(self, z):
        """
        ionization_fraction(z)

        Return the ionization fraction for a given redshift z

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["thermodynamics"])

        cdef int last_index #junk
        cdef double * pvecback
        cdef double * pvecthermo

        zarr = np.atleast_1d(z).astype(np.float64)
        xe = np.empty_like(zarr)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))
        pvecthermo = <double*> calloc(self.th.th_size,sizeof(double))

        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              free(pvecthermo) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          if thermodynamics_at_z(&self.ba,&self.th,redshift,inter_normal,&last_index,pvecback,pvecthermo) == _FAILURE_:
              free(pvecback) #manual free due to error
              free(pvecthermo) #manual free due to error
              raise CosmoSevereError(self.th.error_message)

          xe[iz] = pvecthermo[self.th.index_th_xe]

        free(pvecback)
        free(pvecthermo)

        return (xe[0] if np.isscalar(z) else xe)

    def baryon_temperature(self, z):
        """
        baryon_temperature(z)

        Give the baryon temperature for a given redshift z

        Parameters
        ----------
        z : float
                Desired redshift
        """
        self.compute(["thermodynamics"])

        cdef int last_index #junk
        cdef double * pvecback
        cdef double * pvecthermo

        zarr = np.atleast_1d(z).astype(np.float64)
        Tb = np.empty_like(zarr)

        pvecback = <double*> calloc(self.ba.bg_size,sizeof(double))
        pvecthermo = <double*> calloc(self.th.th_size,sizeof(double))

        for iz, redshift in enumerate(zarr):
          if background_at_z(&self.ba,redshift,long_info,inter_normal,&last_index,pvecback)==_FAILURE_:
              free(pvecback) #manual free due to error
              free(pvecthermo) #manual free due to error
              raise CosmoSevereError(self.ba.error_message)

          if thermodynamics_at_z(&self.ba,&self.th,redshift,inter_normal,&last_index,pvecback,pvecthermo) == _FAILURE_:
              free(pvecback) #manual free due to error
              free(pvecthermo) #manual free due to error
              raise CosmoSevereError(self.th.error_message)

          Tb[iz] = pvecthermo[self.th.index_th_Tb]

        free(pvecback)
        free(pvecthermo)

        return (Tb[0] if np.isscalar(z) else Tb)

    def T_cmb(self):
        """
        Return the CMB temperature
        """
        return self.ba.T_cmb

    # redundent with a previous Omega_m() funciton,
    # but we leave it not to break compatibility
    def Omega0_m(self):
        """
        Return the sum of Omega0 for all non-relativistic components
        """
        return self.ba.Omega0_m

    def get_background(self):
        """
        Return an array of the background quantities at all times.

        Parameters
        ----------

        Returns
        -------
        background : dictionary containing background.
        """
        self.compute(["background"])

        cdef char *titles
        cdef double* data
        titles = <char*>calloc(_MAXTITLESTRINGLENGTH_,sizeof(char))

        if background_output_titles(&self.ba, titles)==_FAILURE_:
            free(titles) #manual free due to error
            raise CosmoSevereError(self.ba.error_message)

        tmp = <bytes> titles
        tmp = str(tmp.decode())
        names = tmp.split("\t")[:-1]
        number_of_titles = len(names)
        timesteps = self.ba.bt_size

        data = <double*>malloc(sizeof(double)*timesteps*number_of_titles)

        if background_output_data(&self.ba, number_of_titles, data)==_FAILURE_:
            free(titles) #manual free due to error
            free(data) #manual free due to error
            raise CosmoSevereError(self.ba.error_message)

        background = {}

        for i in range(number_of_titles):
            background[names[i]] = np.zeros(timesteps, dtype=np.double)
            for index in range(timesteps):
                background[names[i]][index] = data[index*number_of_titles+i]

        free(titles)
        free(data)
        return background

    def get_thermodynamics(self):
        """
        Return the thermodynamics quantities.

        Returns
        -------
        thermodynamics : dictionary containing thermodynamics.
        """
        self.compute(["thermodynamics"])

        cdef char *titles
        cdef double* data

        titles = <char*>calloc(_MAXTITLESTRINGLENGTH_,sizeof(char))

        if thermodynamics_output_titles(&self.ba, &self.th, titles)==_FAILURE_:
            free(titles) #manual free due to error
            raise CosmoSevereError(self.th.error_message)

        tmp = <bytes> titles
        tmp = str(tmp.decode())
        names = tmp.split("\t")[:-1]
        number_of_titles = len(names)
        timesteps = self.th.tt_size

        data = <double*>malloc(sizeof(double)*timesteps*number_of_titles)

        if thermodynamics_output_data(&self.ba, &self.th, number_of_titles, data)==_FAILURE_:
            free(titles) #manual free due to error
            free(data) #manual free due to error
            raise CosmoSevereError(self.th.error_message)

        thermodynamics = {}

        for i in range(number_of_titles):
            thermodynamics[names[i]] = np.zeros(timesteps, dtype=np.double)
            for index in range(timesteps):
                thermodynamics[names[i]][index] = data[index*number_of_titles+i]

        free(titles)
        free(data)
        return thermodynamics

    def get_primordial(self):
        """
        Return the primordial scalar and/or tensor spectrum depending on 'modes'.
        'output' must be set to something, e.g. 'tCl'.

        Returns
        -------
        primordial : dictionary containing k-vector and primordial scalar and tensor P(k).
        """
        self.compute(["primordial"])

        cdef char *titles
        cdef double* data

        titles = <char*>calloc(_MAXTITLESTRINGLENGTH_,sizeof(char))

        if primordial_output_titles(&self.pt, &self.pm, titles)==_FAILURE_:
            free(titles) #manual free due to error
            raise CosmoSevereError(self.pm.error_message)

        tmp = <bytes> titles
        tmp = str(tmp.decode())
        names = tmp.split("\t")[:-1]
        number_of_titles = len(names)
        timesteps = self.pm.lnk_size

        data = <double*>malloc(sizeof(double)*timesteps*number_of_titles)

        if primordial_output_data(&self.pt, &self.pm, number_of_titles, data)==_FAILURE_:
            free(titles) #manual free due to error
            free(data) #manual free due to error
            raise CosmoSevereError(self.pm.error_message)

        primordial = {}

        for i in range(number_of_titles):
            primordial[names[i]] = np.zeros(timesteps, dtype=np.double)
            for index in range(timesteps):
                primordial[names[i]][index] = data[index*number_of_titles+i]

        free(titles)
        free(data)
        return primordial

    def get_perturbations(self, return_copy=True):
        """
        Return scalar, vector and/or tensor perturbations as arrays for requested
        k-values.

        .. note::

            you need to specify both 'k_output_values', and have some
            perturbations computed, for instance by setting 'output' to 'tCl'.

            Do not enable 'return_copy=False' unless you know exactly what you are doing.
            This will mean that you get access to the direct C pointers inside CLASS.
            That also means that if class is deallocated,
            your perturbations array will become invalid. Beware!

        Returns
        -------
        perturbations : dict of array of dicts
                perturbations['scalar'] is an array of length 'k_output_values' of
                dictionary containing scalar perturbations.
                Similar for perturbations['vector'] and perturbations['tensor'].
        """
        self.compute(["perturbations"])

        perturbations = {}

        if self.pt.k_output_values_num<1:
            return perturbations

        cdef:
            Py_ssize_t j
            Py_ssize_t i
            Py_ssize_t number_of_titles
            Py_ssize_t timesteps
            list names
            list tmparray
            dict tmpdict
            double[:,::1] data_mv
            double ** thedata
            int * thesizes

        # Doing the exact same thing 3 times, for scalar, vector and tensor. Sorry
        # for copy-and-paste here, but I don't know what else to do.
        for mode in ['scalar','vector','tensor']:
            if mode=='scalar' and self.pt.has_scalars:
                thetitles = <bytes> self.pt.scalar_titles
                thedata = self.pt.scalar_perturbations_data
                thesizes = self.pt.size_scalar_perturbation_data
            elif mode=='vector' and self.pt.has_vectors:
                thetitles = <bytes> self.pt.vector_titles
                thedata = self.pt.vector_perturbations_data
                thesizes = self.pt.size_vector_perturbation_data
            elif mode=='tensor' and self.pt.has_tensors:
                thetitles = <bytes> self.pt.tensor_titles
                thedata = self.pt.tensor_perturbations_data
                thesizes = self.pt.size_tensor_perturbation_data
            else:
                continue
            thetitles = str(thetitles.decode())
            names = thetitles.split("\t")[:-1]
            number_of_titles = len(names)
            tmparray = []
            if number_of_titles != 0:
                for j in range(self.pt.k_output_values_num):
                    timesteps = thesizes[j]//number_of_titles
                    tmpdict={}
                    data_mv = <double[:timesteps,:number_of_titles]> thedata[j]
                    for i in range(number_of_titles):
                        tmpdict[names[i]] = (np.asarray(data_mv[:,i]).copy() if return_copy else np.asarray(data_mv[:,i]))
                    tmparray.append(tmpdict)
            perturbations[mode] = tmparray

        return perturbations

    def get_transfer(self, z=0., output_format='class'):
        """
        Return the density and/or velocity transfer functions for all initial
        conditions today. You must include 'mTk' and/or 'vCTk' in the list of
        'output'. The transfer functions can also be computed at higher redshift z
        provided that 'z_pk' has been set and that 0<z<z_pk.

        Parameters
        ----------
        z  : redshift (default = 0)
        output_format  : ('class' or 'camb') Format transfer functions according to
                         CLASS convention (default) or CAMB convention.

        Returns
        -------
        tk : dictionary containing transfer functions.
        """
        self.compute(["transfer"])

        cdef char *titles
        cdef double* data
        cdef char ic_info[1024]
        cdef FileName ic_suffix
        cdef file_format outf

        if (not self.pt.has_density_transfers) and (not self.pt.has_velocity_transfers):
            return {}

        if output_format == 'camb':
            outf = camb_format
        else:
            outf = class_format

        index_md = self.pt.index_md_scalars;
        titles = <char*>calloc(_MAXTITLESTRINGLENGTH_,sizeof(char))

        if perturbations_output_titles(&self.ba,&self.pt, outf, titles)==_FAILURE_:
            free(titles) #manual free due to error
            raise CosmoSevereError(self.pt.error_message)

        tmp = <bytes> titles
        tmp = str(tmp.decode())
        names = tmp.split("\t")[:-1]
        number_of_titles = len(names)
        timesteps = self.pt.k_size[index_md]

        size_ic_data = timesteps*number_of_titles;
        ic_num = self.pt.ic_size[index_md];

        data = <double*>malloc(sizeof(double)*size_ic_data*ic_num)

        if perturbations_output_data_at_z(&self.ba, &self.pt, outf, <double> z, number_of_titles, data)==_FAILURE_:
            raise CosmoSevereError(self.pt.error_message)

        transfers = {}

        for index_ic in range(ic_num):
            if perturbations_output_firstline_and_ic_suffix(&self.pt, index_ic, ic_info, ic_suffix)==_FAILURE_:
                free(titles) #manual free due to error
                free(data) #manual free due to error
                raise CosmoSevereError(self.pt.error_message)
            ic_key = <bytes> ic_suffix

            tmpdict = {}
            for i in range(number_of_titles):
                tmpdict[names[i]] = np.zeros(timesteps, dtype=np.double)
                for index in range(timesteps):
                    tmpdict[names[i]][index] = data[index_ic*size_ic_data+index*number_of_titles+i]

            if ic_num==1:
                transfers = tmpdict
            else:
                transfers[ic_key] = tmpdict

        free(titles)
        free(data)

        return transfers

    def get_current_derived_parameters(self, names):
        """
        get_current_derived_parameters(names)

        Return a dictionary containing an entry for all the names defined in the
        input list.

        Parameters
        ----------
        names : list
                Derived parameters that can be asked from Monte Python, or
                elsewhere.

        Returns
        -------
        derived : dict

        .. warning::

            This method used to take as an argument directly the data class from
            Monte Python. To maintain compatibility with this old feature, a
            check is performed to verify that names is indeed a list. If not, it
            returns a TypeError. The old version of this function, when asked
            with the new argument, will raise an AttributeError.

        """
        if type(names) != type([]):
            raise TypeError("Deprecated")

        self.compute(["thermodynamics"])

        derived = {}
        for name in names:
            if name == 'h':
                value = self.ba.h
            elif name == 'H0':
                value = self.ba.h*100
            elif name == 'Omega0_lambda' or name == 'Omega_Lambda':
                value = self.ba.Omega0_lambda
            elif name == 'Omega0_fld':
                value = self.ba.Omega0_fld
            elif name == 'age':
                value = self.ba.age
            elif name == 'conformal_age':
                value = self.ba.conformal_age
            elif name == 'm_ncdm_in_eV':
                value = self.ba.m_ncdm_in_eV[0]
            elif name == 'm_ncdm_tot':
                value = self.ba.Omega0_ncdm_tot*self.ba.h*self.ba.h*93.14
            elif name == 'Neff':
                value = self.ba.Neff
            elif name == 'Omega_m':
                value = self.ba.Omega0_m
            elif name == 'omega_m':
                value = self.ba.Omega0_m*self.ba.h**2
            elif name == 'xi_idr':
                value = self.ba.T_idr/self.ba.T_cmb
            elif name == 'N_dg':
                value = self.ba.Omega0_idr/self.ba.Omega0_g*8./7.*pow(11./4.,4./3.)
            elif name == 'Gamma_0_nadm':
                value = self.th.a_idm_dr*(4./3.)*(self.ba.h*self.ba.h*self.ba.Omega0_idr)
            elif name == 'a_dark':
                value = self.th.a_idm_dr
            elif name == 'tau_reio':
                value = self.th.tau_reio
            elif name == 'z_reio':
                value = self.th.z_reio
            elif name == 'z_rec':
                value = self.th.z_rec
            elif name == 'tau_rec':
                value = self.th.tau_rec
            elif name == 'rs_rec':
                value = self.th.rs_rec
            elif name == 'rs_rec_h':
                value = self.th.rs_rec*self.ba.h
            elif name == 'ds_rec':
                value = self.th.ds_rec
            elif name == 'ds_rec_h':
                value = self.th.ds_rec*self.ba.h
            elif name == 'ra_rec':
                value = self.th.da_rec*(1.+self.th.z_rec)
            elif name == 'ra_rec_h':
                value = self.th.da_rec*(1.+self.th.z_rec)*self.ba.h
            elif name == 'da_rec':
                value = self.th.da_rec
            elif name == 'da_rec_h':
                value = self.th.da_rec*self.ba.h
            elif name == 'z_star':
                value = self.th.z_star
            elif name == 'tau_star':
                value = self.th.tau_star
            elif name == 'rs_star':
                value = self.th.rs_star
            elif name == 'ds_star':
                value = self.th.ds_star
            elif name == 'ra_star':
                value = self.th.ra_star
            elif name == 'da_star':
                value = self.th.da_star
            elif name == 'rd_star':
                value = self.th.rd_star
            elif name == 'z_d':
                value = self.th.z_d
            elif name == 'tau_d':
                value = self.th.tau_d
            elif name == 'ds_d':
                value = self.th.ds_d
            elif name == 'ds_d_h':
                value = self.th.ds_d*self.ba.h
            elif name == 'rs_d':
                value = self.th.rs_d
            elif name == 'rs_d_h':
                value = self.th.rs_d*self.ba.h
            elif name == 'conf_time_reio':
                value = self.th.conf_time_reio
            elif name == '100*theta_s':
                value = 100.*self.th.rs_rec/self.th.da_rec/(1.+self.th.z_rec)
            elif name == '100*theta_star':
                value = 100.*self.th.rs_star/self.th.da_star/(1.+self.th.z_star)
            elif name == 'theta_s_100':
                value = 100.*self.th.rs_rec/self.th.da_rec/(1.+self.th.z_rec)
            elif name == 'theta_star_100':
                value = 100.*self.th.rs_star/self.th.da_star/(1.+self.th.z_star)
            elif name == 'YHe':
                value = self.th.YHe
            elif name == 'n_e':
                value = self.th.n_e
            elif name == 'A_s':
                value = self.pm.A_s
            elif name == 'ln10^{10}A_s':
                value = log(1.e10*self.pm.A_s)
            elif name == 'ln_A_s_1e10':
                value = log(1.e10*self.pm.A_s)
            elif name == 'n_s':
                value = self.pm.n_s
            elif name == 'alpha_s':
                value = self.pm.alpha_s
            elif name == 'beta_s':
                value = self.pm.beta_s
            elif name == 'r':
                # This is at the pivot scale
                value = self.pm.r
            elif name == 'r_0002':
                # at k_pivot = 0.002/Mpc
                value = self.pm.r*(0.002/self.pm.k_pivot)**(
                    self.pm.n_t-self.pm.n_s-1+0.5*self.pm.alpha_s*log(
                        0.002/self.pm.k_pivot))
            elif name == 'n_t':
                value = self.pm.n_t
            elif name == 'alpha_t':
                value = self.pm.alpha_t
            elif name == 'V_0':
                value = self.pm.V0
            elif name == 'V_1':
                value = self.pm.V1
            elif name == 'V_2':
                value = self.pm.V2
            elif name == 'V_3':
                value = self.pm.V3
            elif name == 'V_4':
                value = self.pm.V4
            elif name == 'epsilon_V':
                eps1 = self.pm.r*(1./16.-0.7296/16.*(self.pm.r/8.+self.pm.n_s-1.))
                eps2 = -self.pm.n_s+1.-0.7296*self.pm.alpha_s-self.pm.r*(1./8.+1./8.*(self.pm.n_s-1.)*(-0.7296-1.5))-(self.pm.r/8.)**2*(-0.7296-1.)
                value = eps1*((1.-eps1/3.+eps2/6.)/(1.-eps1/3.))**2
            elif name == 'eta_V':
                eps1 = self.pm.r*(1./16.-0.7296/16.*(self.pm.r/8.+self.pm.n_s-1.))
                eps2 = -self.pm.n_s+1.-0.7296*self.pm.alpha_s-self.pm.r*(1./8.+1./8.*(self.pm.n_s-1.)*(-0.7296-1.5))-(self.pm.r/8.)**2*(-0.7296-1.)
                eps23 = 1./8.*(self.pm.r**2/8.+(self.pm.n_s-1.)*self.pm.r-8.*self.pm.alpha_s)
                value = (2.*eps1-eps2/2.-2./3.*eps1**2+5./6.*eps1*eps2-eps2**2/12.-eps23/6.)/(1.-eps1/3.)
            elif name == 'ksi_V^2':
                eps1 = self.pm.r*(1./16.-0.7296/16.*(self.pm.r/8.+self.pm.n_s-1.))
                eps2 = -self.pm.n_s+1.-0.7296*self.pm.alpha_s-self.pm.r*(1./8.+1./8.*(self.pm.n_s-1.)*(-0.7296-1.5))-(self.pm.r/8.)**2*(-0.7296-1.)
                eps23 = 1./8.*(self.pm.r**2/8.+(self.pm.n_s-1.)*self.pm.r-8.*self.pm.alpha_s)
                value = 2.*(1.-eps1/3.+eps2/6.)*(2.*eps1**2-3./2.*eps1*eps2+eps23/4.)/(1.-eps1/3.)**2
            elif name == 'exp_m_2_tau_As':
                value = exp(-2.*self.th.tau_reio)*self.pm.A_s
            elif name == 'phi_min':
                value = self.pm.phi_min
            elif name == 'phi_max':
                value = self.pm.phi_max
            elif name == 'sigma8':
                self.compute(["fourier"])
                if (self.pt.has_pk_matter == _FALSE_):
                    raise CosmoSevereError("No power spectrum computed. In order to get sigma8, you must add mPk to the list of outputs.")
                value = self.fo.sigma8[self.fo.index_pk_m]
            elif name == 'sigma8_cb':
                self.compute(["fourier"])
                if (self.pt.has_pk_matter == _FALSE_):
                    raise CosmoSevereError("No power spectrum computed. In order to get sigma8_cb, you must add mPk to the list of outputs.")
                value = self.fo.sigma8[self.fo.index_pk_cb]
            elif name == 'k_eq':
                value = self.ba.a_eq*self.ba.H_eq
            elif name == 'a_eq':
                value = self.ba.a_eq
            elif name == 'z_eq':
                value = 1./self.ba.a_eq-1.
            elif name == 'H_eq':
                value = self.ba.H_eq
            elif name == 'tau_eq':
                value = self.ba.tau_eq
            elif name == 'g_sd':
                self.compute(["distortions"])
                if (self.sd.has_distortions == _FALSE_):
                    raise CosmoSevereError("No spectral distortions computed. In order to get g_sd, you must add sd to the list of outputs.")
                value = self.sd.sd_parameter_table[0]
            elif name == 'y_sd':
                self.compute(["distortions"])
                if (self.sd.has_distortions == _FALSE_):
                    raise CosmoSevereError("No spectral distortions computed. In order to get y_sd, you must add sd to the list of outputs.")
                value = self.sd.sd_parameter_table[1]
            elif name == 'mu_sd':
                self.compute(["distortions"])
                if (self.sd.has_distortions == _FALSE_):
                    raise CosmoSevereError("No spectral distortions computed. In order to get mu_sd, you must add sd to the list of outputs.")
                value = self.sd.sd_parameter_table[2]
            else:
                raise CosmoSevereError("%s was not recognized as a derived parameter" % name)
            derived[name] = value
        return derived

    def nonlinear_scale(self, np.ndarray[DTYPE_t,ndim=1] z, int z_size):
        """
        nonlinear_scale(z, z_size)

        Return the nonlinear scale for all the redshift specified in z, of size
        z_size

        Parameters
        ----------
        z : numpy array
                Array of requested redshifts
        z_size : int
                Size of the redshift array
        """
        self.compute(["fourier"])

        cdef int index_z
        cdef np.ndarray[DTYPE_t, ndim=1] k_nl = np.zeros(z_size,'float64')
        cdef np.ndarray[DTYPE_t, ndim=1] k_nl_cb = np.zeros(z_size,'float64')
        #cdef double *k_nl
        #k_nl = <double*> calloc(z_size,sizeof(double))
        for index_z in range(z_size):
            if fourier_k_nl_at_z(&self.ba,&self.fo,z[index_z],&k_nl[index_z],&k_nl_cb[index_z]) == _FAILURE_:
                raise CosmoSevereError(self.fo.error_message)

        return k_nl

    def nonlinear_scale_cb(self, np.ndarray[DTYPE_t,ndim=1] z, int z_size):
        """

make        nonlinear_scale_cb(z, z_size)

        Return the nonlinear scale for all the redshift specified in z, of size

        z_size

        Parameters
        ----------
        z : numpy array
                Array of requested redshifts
        z_size : int
                Size of the redshift array
        """
        self.compute(["fourier"])

        cdef int index_z
        cdef np.ndarray[DTYPE_t, ndim=1] k_nl = np.zeros(z_size,'float64')
        cdef np.ndarray[DTYPE_t, ndim=1] k_nl_cb = np.zeros(z_size,'float64')
        #cdef double *k_nl
        #k_nl = <double*> calloc(z_size,sizeof(double))
        if (self.ba.Omega0_ncdm_tot == 0.):
            raise CosmoSevereError(
                "No massive neutrinos. You must use pk, rather than pk_cb."
                )
        for index_z in range(z_size):
            if fourier_k_nl_at_z(&self.ba,&self.fo,z[index_z],&k_nl[index_z],&k_nl_cb[index_z]) == _FAILURE_:
                raise CosmoSevereError(self.fo.error_message)

        return k_nl_cb

    def __call__(self, ctx):
        """
        Function to interface with CosmoHammer

        Parameters
        ----------
        ctx : context
                Contains several dictionaries storing data and cosmological
                information

        """
        data = ctx.get('data')  # recover data from the context

        # If the module has already been called once, clean-up
        if self.state:
            self.struct_cleanup()

        # Set the module to the current values
        self.set(data.cosmo_arguments)
        self.compute(["lensing"])

        # Compute the derived paramter value and store them
        params = ctx.getData()
        self.get_current_derived_parameters(
            data.get_mcmc_parameters(['derived']))
        for elem in data.get_mcmc_parameters(['derived']):
            data.mcmc_parameters[elem]['current'] /= \
                data.mcmc_parameters[elem]['scale']
            params[elem] = data.mcmc_parameters[elem]['current']

        ctx.add('boundary', True)
        # Store itself into the context, to be accessed by the likelihoods
        ctx.add('cosmo', self)

    def get_pk_array(self, np.ndarray[DTYPE_t,ndim=1] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, nonlinear):
        """ Fast function to get the power spectrum on a k and z array """
        self.compute(["fourier"])
        cdef np.ndarray[DTYPE_t, ndim=1] pk = np.zeros(k_size*z_size,'float64')
        cdef np.ndarray[DTYPE_t, ndim=1] pk_cb = np.zeros(k_size*z_size,'float64')

        if nonlinear == 0:
            fourier_pks_at_kvec_and_zvec(&self.ba, &self.fo, pk_linear, <double*> k.data, k_size, <double*> z.data, z_size, <double*> pk.data, <double*> pk_cb.data)

        else:
            fourier_pks_at_kvec_and_zvec(&self.ba, &self.fo, pk_nonlinear, <double*> k.data, k_size, <double*> z.data, z_size, <double*> pk.data, <double*> pk_cb.data)

        return pk

    def get_pk_cb_array(self, np.ndarray[DTYPE_t,ndim=1] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, nonlinear):
        """ Fast function to get the power spectrum on a k and z array """
        self.compute(["fourier"])
        cdef np.ndarray[DTYPE_t, ndim=1] pk = np.zeros(k_size*z_size,'float64')
        cdef np.ndarray[DTYPE_t, ndim=1] pk_cb = np.zeros(k_size*z_size,'float64')

        if nonlinear == 0:
            fourier_pks_at_kvec_and_zvec(&self.ba, &self.fo, pk_linear, <double*> k.data, k_size, <double*> z.data, z_size, <double*> pk.data, <double*> pk_cb.data)

        else:
            fourier_pks_at_kvec_and_zvec(&self.ba, &self.fo, pk_nonlinear, <double*> k.data, k_size, <double*> z.data, z_size, <double*> pk.data, <double*> pk_cb.data)

        return pk_cb

    def Omega0_k(self):
        """ Curvature contribution """
        return self.ba.Omega0_k

    def Omega0_cdm(self):
        return self.ba.Omega0_cdm

    def spectral_distortion_amplitudes(self):
        self.compute(["distortions"])
        if self.sd.type_size == 0:
          raise CosmoSevereError("No spectral distortions have been calculated. Check that the output contains 'Sd' and the compute level is at least 'distortions'.")
        cdef np.ndarray[DTYPE_t, ndim=1] sd_type_amps = np.zeros(self.sd.type_size,'float64')
        for i in range(self.sd.type_size):
          sd_type_amps[i] = self.sd.sd_parameter_table[i]
        return sd_type_amps

    def spectral_distortion(self):
        self.compute(["distortions"])
        if self.sd.x_size == 0:
          raise CosmoSevereError("No spectral distortions have been calculated. Check that the output contains 'Sd' and the compute level is at least 'distortions'.")
        cdef np.ndarray[DTYPE_t, ndim=1] sd_amp = np.zeros(self.sd.x_size,'float64')
        cdef np.ndarray[DTYPE_t, ndim=1] sd_nu = np.zeros(self.sd.x_size,'float64')
        for i in range(self.sd.x_size):
          sd_amp[i] = self.sd.DI[i]*self.sd.DI_units*1.e26
          sd_nu[i] = self.sd.x[i]*self.sd.x_to_nu
        return sd_nu,sd_amp


    def get_sources(self):
        """
        Return the source functions for all k, tau in the grid.

        Returns
        -------
        sources : dictionary containing source functions.
        k_array : numpy array containing k values.
        tau_array: numpy array containing tau values.
        """
        self.compute(["fourier"])
        sources = {}

        cdef:
            int index_k, index_tau, i_index_type;
            int index_type;
            int index_md = self.pt.index_md_scalars;
            double * k = self.pt.k[index_md];
            double * tau = self.pt.tau_sampling;
            int index_ic = self.pt.index_ic_ad;
            int k_size = self.pt.k_size[index_md];
            int tau_size = self.pt.tau_size;
            int tp_size = self.pt.tp_size[index_md];
            double *** sources_ptr = self.pt.sources;
            double [:,:] tmparray = np.zeros((k_size, tau_size)) ;
            double [:] k_array = np.zeros(k_size);
            double [:] tau_array = np.zeros(tau_size);

        names = []

        for index_k in range(k_size):
            k_array[index_k] = k[index_k]
        for index_tau in range(tau_size):
            tau_array[index_tau] = tau[index_tau]

        indices = []

        if self.pt.has_source_t:
            indices.extend([
                self.pt.index_tp_t0,
                self.pt.index_tp_t1,
                self.pt.index_tp_t2
                ])
            names.extend([
                "t0",
                "t1",
                "t2"
                ])
        if self.pt.has_source_p:
            indices.append(self.pt.index_tp_p)
            names.append("p")
        if self.pt.has_source_phi:
            indices.append(self.pt.index_tp_phi)
            names.append("phi")
        if self.pt.has_source_phi_plus_psi:
            indices.append(self.pt.index_tp_phi_plus_psi)
            names.append("phi_plus_psi")
        if self.pt.has_source_phi_prime:
            indices.append(self.pt.index_tp_phi_prime)
            names.append("phi_prime")
        if self.pt.has_source_psi:
            indices.append(self.pt.index_tp_psi)
            names.append("psi")
        if self.pt.has_source_H_T_Nb_prime:
            indices.append(self.pt.index_tp_H_T_Nb_prime)
            names.append("H_T_Nb_prime")
        if self.pt.index_tp_k2gamma_Nb:
            indices.append(self.pt.index_tp_k2gamma_Nb)
            names.append("k2gamma_Nb")
        if self.pt.has_source_h:
            indices.append(self.pt.index_tp_h)
            names.append("h")
        if self.pt.has_source_h_prime:
            indices.append(self.pt.index_tp_h_prime)
            names.append("h_prime")
        if self.pt.has_source_eta:
            indices.append(self.pt.index_tp_eta)
            names.append("eta")
        if self.pt.has_source_eta_prime:
            indices.append(self.pt.index_tp_eta_prime)
            names.append("eta_prime")
        if self.pt.has_source_delta_tot:
            indices.append(self.pt.index_tp_delta_tot)
            names.append("delta_tot")
        if self.pt.has_source_delta_m:
            indices.append(self.pt.index_tp_delta_m)
            names.append("delta_m")
        if self.pt.has_source_delta_cb:
            indices.append(self.pt.index_tp_delta_cb)
            names.append("delta_cb")
        if self.pt.has_source_delta_g:
            indices.append(self.pt.index_tp_delta_g)
            names.append("delta_g")
        if self.pt.has_source_delta_b:
            indices.append(self.pt.index_tp_delta_b)
            names.append("delta_b")
        if self.pt.has_source_delta_cdm:
            indices.append(self.pt.index_tp_delta_cdm)
            names.append("delta_cdm")
        if self.pt.has_source_delta_idm:
            indices.append(self.pt.index_tp_delta_idm)
            names.append("delta_idm")
        if self.pt.has_source_delta_dcdm:
            indices.append(self.pt.index_tp_delta_dcdm)
            names.append("delta_dcdm")
        if self.pt.has_source_delta_fld:
            indices.append(self.pt.index_tp_delta_fld)
            names.append("delta_fld")
        if self.pt.has_source_delta_scf:
            indices.append(self.pt.index_tp_delta_scf)
            names.append("delta_scf")
        if self.pt.has_source_delta_dr:
            indices.append(self.pt.index_tp_delta_dr)
            names.append("delta_dr")
        if self.pt.has_source_delta_ur:
            indices.append(self.pt.index_tp_delta_ur)
            names.append("delta_ur")
        if self.pt.has_source_delta_idr:
            indices.append(self.pt.index_tp_delta_idr)
            names.append("delta_idr")
        if self.pt.has_source_delta_ncdm:
            for incdm in range(self.ba.N_ncdm):
              indices.append(self.pt.index_tp_delta_ncdm1+incdm)
              names.append("delta_ncdm[{}]".format(incdm))
        if self.pt.has_source_theta_tot:
            indices.append(self.pt.index_tp_theta_tot)
            names.append("theta_tot")
        if self.pt.has_source_theta_m:
            indices.append(self.pt.index_tp_theta_m)
            names.append("theta_m")
        if self.pt.has_source_theta_cb:
            indices.append(self.pt.index_tp_theta_cb)
            names.append("theta_cb")
        if self.pt.has_source_theta_g:
            indices.append(self.pt.index_tp_theta_g)
            names.append("theta_g")
        if self.pt.has_source_theta_b:
            indices.append(self.pt.index_tp_theta_b)
            names.append("theta_b")
        if self.pt.has_source_theta_cdm:
            indices.append(self.pt.index_tp_theta_cdm)
            names.append("theta_cdm")
        if self.pt.has_source_theta_idm:
            indices.append(self.pt.index_tp_theta_idm)
            names.append("theta_idm")
        if self.pt.has_source_theta_dcdm:
            indices.append(self.pt.index_tp_theta_dcdm)
            names.append("theta_dcdm")
        if self.pt.has_source_theta_fld:
            indices.append(self.pt.index_tp_theta_fld)
            names.append("theta_fld")
        if self.pt.has_source_theta_scf:
            indices.append(self.pt.index_tp_theta_scf)
            names.append("theta_scf")
        if self.pt.has_source_theta_dr:
            indices.append(self.pt.index_tp_theta_dr)
            names.append("theta_dr")
        if self.pt.has_source_theta_ur:
            indices.append(self.pt.index_tp_theta_ur)
            names.append("theta_ur")
        if self.pt.has_source_theta_idr:
            indices.append(self.pt.index_tp_theta_idr)
            names.append("theta_idr")
        if self.pt.has_source_theta_ncdm:
            for incdm in range(self.ba.N_ncdm):
              indices.append(self.pt.index_tp_theta_ncdm1+incdm)
              names.append("theta_ncdm[{}]".format(incdm))

        for index_type, name in zip(indices, names):
            tmparray = np.empty((k_size,tau_size))
            for index_k in range(k_size):
                for index_tau in range(tau_size):
                    tmparray[index_k][index_tau] = sources_ptr[index_md][index_ic*tp_size+index_type][index_tau*k_size + index_k];

            sources[name] = np.asarray(tmparray)

        return (sources, np.asarray(k_array), np.asarray(tau_array))