Spaces:
Sleeping
Sleeping
File size: 6,128 Bytes
9c8eb77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# dermbot_gradio_app.py
import gradio as gr
from PIL import Image
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.models import vit_b_16, vit_l_16, ViT_B_16_Weights, ViT_L_16_Weights
from huggingface_hub import hf_hub_download
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from qdrant_client import QdrantClient
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_openai import ChatOpenAI
import os
import io
from fpdf import FPDF
# === Constants ===
multilabel_class_names = [
"Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch",
"Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae",
"Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis",
"Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped",
"Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow",
"Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma",
"Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst"
]
multiclass_class_names = [
"systemic", "hair", "drug_reactions", "uriticaria", "acne", "light",
"autoimmune", "papulosquamous", "eczema", "skincancer",
"benign_tumors", "bacteria_parasetic_infections", "fungal_infections", "viral_skin_infections"
]
# === Models ===
class SkinViT(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
in_features = self.model.heads.head.in_features
self.model.heads.head = nn.Linear(in_features, num_classes)
def forward(self, x):
return self.model(x)
class DermNetViT(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.model = vit_l_16(weights=ViT_L_16_Weights.DEFAULT)
in_features = self.model.heads[0].in_features
self.model.heads = nn.Sequential(
nn.Linear(in_features, 1024),
nn.ReLU(),
nn.Linear(1024, num_classes)
)
def forward(self, x):
return self.model(x)
# === Load Model State Dicts ===
multilabel_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="skin_vit_fold10_sd.pth")
multiclass_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="best_dermnet_vit_sd.pth")
multilabel_model = SkinViT(num_classes=len(multilabel_class_names))
multiclass_model = DermNetViT(num_classes=len(multiclass_class_names))
multilabel_model.load_state_dict(torch.load(multilabel_model_path, map_location="cpu"))
multiclass_model.load_state_dict(torch.load(multiclass_model_path, map_location="cpu"))
multilabel_model.eval()
multiclass_model.eval()
# === RAG Setup ===
os.environ["OPENAI_API_KEY"] = "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"
llm = ChatOpenAI(model="gpt-4o", temperature=0.2)
qdrant_client = QdrantClient(
url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io",
api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q"
)
local_embedding = HuggingFaceEmbeddings(
model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
model_kwargs={"trust_remote_code": True, "device": "cpu"}
)
vector_store = Qdrant(
client=qdrant_client,
collection_name="ks_collection_1.5BE",
embeddings=local_embedding
)
retriever = vector_store.as_retriever()
AI_PROMPT_TEMPLATE = """You are an AI-assisted Dermatology Chatbot, specializing in diagnosing and educating users about skin diseases.
You provide accurate, compassionate, and detailed explanations while using correct medical terminology.
Guidelines:
1. Symptoms - Explain in simple terms with proper medical definitions.
2. Causes - Include genetic, environmental, and lifestyle-related risk factors.
3. Medications & Treatments - Provide common prescription and over-the-counter treatments.
4. Warnings & Emergencies - Always recommend consulting a licensed dermatologist.
5. Emergency Note - If symptoms worsen or include difficulty breathing, **advise calling 911 immediately.
Query: {question}
Relevant Information: {context}
Answer:
"""
prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"])
rag_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"}
)
# === Inference ===
def run_diagnosis(image):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
input_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
probs_multi = torch.sigmoid(multilabel_model(input_tensor)).squeeze().numpy()
predicted_multi = [multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > 0.5]
pred_idx = torch.argmax(multiclass_model(input_tensor), dim=1).item()
predicted_single = multiclass_class_names[pred_idx]
return predicted_multi, predicted_single
# === Chat Function ===
def chat_with_bot(image, history=[]):
predicted_multi, predicted_single = run_diagnosis(image)
query = f"What are my treatment options for {predicted_multi} and {predicted_single}?"
response = rag_chain.invoke(query)["result"]
history.append((f"User: {query}", f"AI: {response}"))
return response, history
# === Gradio App ===
with gr.Blocks() as demo:
gr.Markdown("# 🧬 DermBOT — Skin AI Assistant")
chatbot = gr.Chatbot()
img_input = gr.Image(type="pil")
output_text = gr.Textbox(label="DermBOT Response")
btn = gr.Button("Analyze & Diagnose")
state = gr.State([])
btn.click(fn=chat_with_bot, inputs=[img_input, state], outputs=[output_text, state])
if __name__ == "__main__":
demo.launch()
|