File size: 10,029 Bytes
e03d094
 
 
 
 
a182687
e03d094
e09e1b2
 
e03d094
 
 
 
 
 
 
 
 
 
c94124b
 
e03d094
 
 
 
 
 
13f6011
 
 
 
e03d094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0983f
b08c22b
 
e03d094
 
fe0983f
 
b08c22b
fe0983f
e03d094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c052bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e03d094
c052bcc
 
 
e03d094
 
c052bcc
 
 
e03d094
c052bcc
e03d094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a182687
 
 
 
 
 
 
 
 
 
039752f
2b9e0b0
 
 
039752f
a182687
e03d094
 
 
039752f
2b9e0b0
e03d094
 
 
a182687
7a5b0e6
 
e03d094
7a5b0e6
a182687
039752f
a30ff95
f92ed4e
a30ff95
e0d40bf
039752f
e03d094
 
 
 
 
 
 
 
 
 
 
 
 
 
f92ed4e
e03d094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613658a
e03d094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6ac11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import streamlit as st
from PIL import Image
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.models import vit_b_16, vit_l_16, ViT_B_16_Weights, ViT_L_16_Weights
import pandas as pd
from huggingface_hub import hf_hub_download
from langchain_huggingface import HuggingFaceEmbeddings
import io
import os
import base64
from fpdf import FPDF
from sqlalchemy import create_engine
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from sentence_transformers import SentenceTransformer
#from langchain_community.vectorstores.pgvector import PGVector
#from langchain_postgres import PGVector
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.embeddings import SentenceTransformerEmbeddings


torch.cuda.empty_cache()




import nest_asyncio
nest_asyncio.apply()

st.set_page_config(page_title="DermBOT", page_icon="🧬", layout="centered")


# === Model Selection ===
available_models = ["OpenAI GPT-4o", "LLaMA 3", "Gemini Pro"]
st.session_state["selected_model"] = st.sidebar.selectbox("Select LLM Model", available_models)


# === Qdrant DB Setup ===
qdrant_client = QdrantClient(
    url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io",
    api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q"
)
collection_name = "ks_collection_1.5BE"
#embedding_model = SentenceTransformer("D:\DR\RAG\gte-Qwen2-1.5B-instruct", trust_remote_code=True)
#embedding_model.max_seq_length = 8192
#local_embedding = SentenceTransformerEmbeddings(model=embedding_model)



device = "cuda" if torch.cuda.is_available() else "cpu"

local_embedding = HuggingFaceEmbeddings(
    model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
    model_kwargs={
        "trust_remote_code": True,
        "device": device
    }
)
print(" Qwen2-1.5B local embedding model loaded.")


vector_store = Qdrant(
    client=qdrant_client,
    collection_name=collection_name,
    embeddings=local_embedding
)
retriever = vector_store.as_retriever()


# Dynamically initialize LLM based on selection
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
selected_model = st.session_state["selected_model"]
if "OpenAI" in selected_model:
    llm = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=OPENAI_API_KEY)
elif "LLaMA" in selected_model:
    st.warning("LLaMA integration is not implemented yet.")
    st.stop()
elif "Gemini" in selected_model:
    st.warning("Gemini integration is not implemented yet.")
    st.stop()
else:
    st.error("Unsupported model selected.")
    st.stop()

#retriever = vector_store.as_retriever()

AI_PROMPT_TEMPLATE = """
You are DermBOT, a compassionate and knowledgeable AI Dermatology Assistant designed to educate users about skin-related health concerns with clarity, empathy, and precision.

Your goal is to respond like a well-informed human expert—balancing professionalism with warmth and reassurance.

When crafting responses:
- Begin with a clear, engaging summary of the condition or concern.
- Use short paragraphs for readability.
- Include bullet points or numbered lists where appropriate.
- Avoid overly technical terms unless explained simply.
- End with a helpful next step, such as lifestyle advice or when to see a doctor.

🩺 Response Structure:
1. **Overview** — Briefly introduce the condition or concern.
2. **Common Symptoms** — Describe noticeable signs in simple terms.
3. **Causes & Risk Factors** — Include genetic, lifestyle, and environmental aspects.
4. **Treatment Options** — Outline common OTC and prescription treatments.
5. **When to Seek Help** — Warn about symptoms that require urgent care.

Always encourage consulting a licensed dermatologist for personal diagnosis and treatment. For any breathing difficulties, serious infections, or rapid symptom worsening, advise calling emergency services immediately.

---

Query: {question}
Relevant Context: {context}

Your Response:
"""

prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"])

rag_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    chain_type="stuff",
    chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"}
)

# === Class Names ===
multilabel_class_names = [
    "Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch",
    "Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae",
    "Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis",
    "Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped",
    "Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow",
    "Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma",
    "Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst"
]

multiclass_class_names = [
    "systemic", "hair", "drug_reactions", "uriticaria", "acne", "light",
    "autoimmune", "papulosquamous", "eczema", "skincancer",
    "benign_tumors", "bacteria_parasetic_infections", "fungal_infections", "viral_skin_infections"
]

# === Load Models ===
class SkinViT(nn.Module):
    def __init__(self, num_classes):
        super(SkinViT, self).__init__()
        self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
        in_features = self.model.heads.head.in_features
        self.model.heads.head = nn.Linear(in_features, num_classes)

    def forward(self, x):
        return self.model(x)

class DermNetViT(nn.Module):
    def __init__(self, num_classes):
        super(DermNetViT, self).__init__()
        self.model = vit_l_16(weights=ViT_L_16_Weights.DEFAULT)
        in_features = self.model.heads[0].in_features
        self.model.heads[0] = nn.Sequential(
            nn.Dropout(0.3),
            nn.Linear(in_features, num_classes)
        )

    def forward(self, x):
        return self.model(x)



#multilabel_model = torch.load("D:/DR/RAG/BestModels2703/skin_vit_fold10.pth", map_location='cpu')
#multiclass_model = torch.load("D:/DR/RAG/BestModels2703/best_dermnet_vit.pth", map_location='cpu')

# === Load Model State Dicts ===
multilabel_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="skin_vit_fold10_sd.pth")
multiclass_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="best_dermnet_vit_sd.pth")

multilabel_model = SkinViT(num_classes=len(multilabel_class_names))
multiclass_model = DermNetViT(num_classes=len(multiclass_class_names))

#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
multilabel_model.load_state_dict(torch.load(multilabel_model_path, map_location="cpu"))
multiclass_model.load_state_dict(torch.load(multiclass_model_path, map_location="cpu"))


multilabel_model.eval()
multiclass_model.eval()

# === Session Init ===
if "messages" not in st.session_state:
    st.session_state.messages = []

# === Image Processing Function ===
def run_inference(image):
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])
    input_tensor = transform(image).unsqueeze(0)
    with torch.no_grad():
        probs_multi = torch.sigmoid(multilabel_model(input_tensor)).squeeze().numpy()
        predicted_multi = [multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > 0.5]
        pred_idx = torch.argmax(multiclass_model(input_tensor), dim=1).item()
        predicted_single = multiclass_class_names[pred_idx]
    return predicted_multi, predicted_single

# === PDF Export ===
def export_chat_to_pdf(messages):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    for msg in messages:
        role = "You" if msg["role"] == "user" else "AI"
        pdf.multi_cell(0, 10, f"{role}: {msg['content']}\n")
    buf = io.BytesIO()
    pdf.output(buf)
    buf.seek(0)
    return buf

# === App UI ===

st.title("🧬 DermBOT — Skin AI Assistant")
st.caption(f"🧠 Using model: {selected_model}")
uploaded_file = st.file_uploader("Upload a skin image", type=["jpg", "jpeg", "png"])

if uploaded_file:
    st.image(uploaded_file, caption="Uploaded image", use_container_width=True)
    image = Image.open(uploaded_file).convert("RGB")


    predicted_multi, predicted_single = run_inference(image)

    # Show predictions clearly to the user
    st.markdown(f" Skin Issues : {', '.join(predicted_multi)}")
    st.markdown(f" Most Likely Diagnosis : {predicted_single}")

    query = f"What are my treatment options for {predicted_multi} and {predicted_single}?"
    st.session_state.messages.append({"role": "user", "content": query})

    with st.spinner("Analyzing the image and retrieving response..."):
        response = rag_chain.invoke(query)
        st.session_state.messages.append({"role": "assistant", "content": response['result']})

    with st.chat_message("assistant"):
        st.markdown(response['result'])

# === Chat Interface ===
if prompt := st.chat_input("Ask a follow-up..."):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    response = llm.invoke([{"role": m["role"], "content": m["content"]} for m in st.session_state.messages])
    st.session_state.messages.append({"role": "assistant", "content": response.content})
    with st.chat_message("assistant"):
        st.markdown(response.content)

# === PDF Button ===
if st.button("📄 Download Chat as PDF"):
    pdf_file = export_chat_to_pdf(st.session_state.messages)
    st.download_button("Download PDF", data=pdf_file, file_name="chat_history.pdf", mime="application/pdf")