#!/usr/bin/env python # coding: utf-8 # Copyright 2021, IBM Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Python lib to recommend prompts. """ __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado" __copyright__ = "IBM Corporation 2024" __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"] __license__ = "Apache 2.0" __version__ = "0.0.1" import requests import json import math import re import warnings import pandas as pd import numpy as np from sklearn.metrics.pairwise import cosine_similarity import os #os.environ['TRANSFORMERS_CACHE'] ="./models/allmini/cache" import os.path from sentence_transformers import SentenceTransformer from umap import UMAP import tensorflow as tf from umap.parametric_umap import ParametricUMAP, load_ParametricUMAP from sentence_transformers import SentenceTransformer def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json', existing_json_populated_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'): """ Function that receives a default json file with empty embeddings and checks whether there is a partially populated json file. Args: json_file_path: Path to json default file with empty embeddings. existing_json_populated_file_path: Path to partially populated json file. Returns: A json. Raises: Exception when json file can't be loaded. """ json_file = json_file_path if(os.path.isfile(existing_json_populated_file_path)): json_file = existing_json_populated_file_path try: prompt_json = json.load(open(json_file)) json_error = None return prompt_json, json_error except Exception as e: json_error = e print(f'Error when loading sentences json file: {json_error}') prompt_json = None return prompt_json, json_error def query(texts, api_url, headers): """ Function that requests embeddings for a given sentence. Args: texts: The sentence or entered prompt text. api_url: API url for HF request. headers: Content headers for HF request. Returns: A json with the sentence embeddings. Raises: Warning: Warns about sentences that have more than 256 words. """ for t in texts: n_words = len(re.split(r"\s+", t)) if(n_words > 256): # warning in case of prompts longer than 256 words warnings.warn("Warning: Sentence provided is longer than 256 words. Model all-MiniLM-L6-v2 expects sentences up to 256 words.") warnings.warn("Word count:{}".format(n_words)) if('sentence-transformers/all-MiniLM-L6-v2' in api_url): model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') out = model.encode(texts).tolist() else: response = requests.post(api_url, headers=headers, json={"inputs": texts, "options":{"wait_for_model":True}}) out = response.json() return out def split_into_sentences(prompt): """ Function that splits the input text into sentences based on punctuation (.!?). The regular expression pattern '(?<=[.!?]) +' ensures that we split after a sentence-ending punctuation followed by one or more spaces. Args: prompt: The entered prompt text. Returns: A list of extracted sentences. Raises: Nothing. """ sentences = re.split(r'(?<=[.!?]) +', prompt) return sentences def get_similarity(embedding1, embedding2): """ Function that returns cosine similarity between two embeddings. Args: embedding1: first embedding. embedding2: second embedding. Returns: The similarity value. Raises: Nothing. """ v1 = np.array( embedding1 ).reshape( 1, -1 ) v2 = np.array( embedding2 ).reshape( 1, -1 ) similarity = cosine_similarity( v1, v2 ) return similarity[0, 0] def get_distance(embedding1, embedding2): """ Function that returns euclidean distance between two embeddings. Args: embedding1: first embedding. embedding2: second embedding. Returns: The euclidean distance value. Raises: Nothing. """ total = 0 if(len(embedding1) != len(embedding2)): return math.inf for i, obj in enumerate(embedding1): total += math.pow(embedding2[0][i] - embedding1[0][i], 2) return(math.sqrt(total)) def sort_by_similarity(e): """ Function that sorts by similarity. Args: e: Returns: The sorted similarity value. Raises: Nothing. """ return e['similarity'] def recommend_prompt(prompt, prompt_json, api_url, headers, add_lower_threshold = 0.3, add_upper_threshold = 0.5, remove_lower_threshold = 0.1, remove_upper_threshold = 0.5, model_id = 'sentence-transformers/all-minilm-l6-v2'): """ Function that recommends prompts additions or removals. Args: prompt: The entered prompt text. prompt_json: Json file populated with embeddings. api_url: API url for HF request. headers: Content headers for HF request. add_lower_threshold: Lower threshold for sentence addition, the default value is 0.3. add_upper_threshold: Upper threshold for sentence addition, the default value is 0.5. remove_lower_threshold: Lower threshold for sentence removal, the default value is 0.3. remove_upper_threshold: Upper threshold for sentence removal, the default value is 0.5. model_id: Id of the model, the default value is all-minilm-l6-v2 movel. Returns: Prompt values to add or remove. Raises: Nothing. """ if(model_id == 'baai/bge-large-en-v1.5' ): json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json' umap_model = load_ParametricUMAP('./models/umap/BAAI/bge-large-en-v1.5/') elif(model_id == 'intfloat/multilingual-e5-large'): json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json' umap_model = load_ParametricUMAP('./models/umap/intfloat/multilingual-e5-large/') else: # fall back to all-minilm as default json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json' umap_model = load_ParametricUMAP('./models/umap/sentence-transformers/all-MiniLM-L6-v2/') prompt_json = json.load(open(json_file)) # Output initialization out, out['input'], out['add'], out['remove'] = {}, {}, {}, {} input_items, items_to_add, items_to_remove = [], [], [] # Spliting prompt into sentences input_sentences = split_into_sentences(prompt) # TODO: Request embeddings for input an d store in a input_embeddingS # Recommendation of values to add to the current prompt # Using only the last sentence for the add recommendation input_embedding = query(input_sentences[-1], api_url, headers) for v in prompt_json['positive_values']: # Dealing with values without prompts and makinig sure they have the same dimensions if(len(v['centroid']) == len(input_embedding)): if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > add_lower_threshold): closer_prompt = -1 for p in v['prompts']: d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding'])) # The sentence_threshold is being used as a ceiling meaning that for high similarities the sentence/value might already be presente in the prompt # So, we don't want to recommend adding something that is already there if(d_prompt > closer_prompt and d_prompt > add_lower_threshold and d_prompt < add_upper_threshold): closer_prompt = d_prompt items_to_add.append({ 'value': v['label'], 'prompt': p['text'], 'similarity': d_prompt, 'x': p['x'], 'y': p['y']}) out['add'] = items_to_add # Recommendation of values to remove from the current prompt i = 0 # Recommendation of values to remove from the current prompt for sentence in input_sentences: input_embedding = query(sentence, api_url, headers) # remote # Obtaining XY coords for input sentences from a parametric UMAP model if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''): embeddings_umap = umap_model.transform(tf.expand_dims(pd.DataFrame(input_embedding), axis=0)) input_items.append({ 'sentence': sentence, 'x': str(embeddings_umap[0][0]), 'y': str(embeddings_umap[0][1]) }) for v in prompt_json['negative_values']: # Dealing with values without prompts and makinig sure they have the same dimensions if(len(v['centroid']) == len(input_embedding)): if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > remove_lower_threshold): closer_prompt = -1 for p in v['prompts']: d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding'])) # A more restrict threshold is used here to prevent false positives # The sentence_threshold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts # So, yes, we want to recommend the removal of something adversarial we've found if(d_prompt > closer_prompt and d_prompt > remove_upper_threshold): closer_prompt = d_prompt items_to_remove.append({ 'value': v['label'], 'sentence': sentence, 'sentence_index': i, 'closest_harmful_sentence': p['text'], 'similarity': d_prompt, 'x': p['x'], 'y': p['y']}) out['remove'] = items_to_remove i += 1 out['input'] = input_items out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True) values_map = {} for item in out['add'][:]: if(item['value'] in values_map): out['add'].remove(item) else: values_map[item['value']] = item['similarity'] out['add'] = out['add'][0:5] out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True) values_map = {} for item in out['remove'][:]: if(item['value'] in values_map): out['remove'].remove(item) else: values_map[item['value']] = item['similarity'] out['remove'] = out['remove'][0:5] return out def get_thresholds(prompts, prompt_json, api_url, headers, model_id = 'sentence-transformers/all-minilm-l6-v2'): """ Function that recommends thresholds given an array of prompts. Args: prompts: The array with samples of prompts to be used in the system. prompt_json: Sentences to be forwarded to the recommendation endpoint. model_id: Id of the model, the default value is all-minilm-l6-v2 model. Returns: A map with thresholds for the sample prompts and the informed model. Raises: Nothing. """ # Array limits for retrieving the thresholds # if( len( prompts ) < 10 or len( prompts ) > 30 ): # return -1 add_similarities = [] remove_similarities = [] for p_id, p in enumerate(prompts): out = recommend_prompt(p, prompt_json, api_url, headers, 0, 1, 0, 0, model_id) # Wider possible range for r in out['add']: add_similarities.append(r['similarity']) for r in out['remove']: remove_similarities.append(r['similarity']) add_similarities_df = pd.DataFrame({'similarity': add_similarities}) remove_similarities_df = pd.DataFrame({'similarity': remove_similarities}) thresholds = {} thresholds['add_lower_threshold'] = round(add_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) thresholds['add_higher_threshold'] = round(add_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) thresholds['remove_lower_threshold'] = round(remove_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) thresholds['remove_higher_threshold'] = round(remove_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) return thresholds def recommend_local(prompt, prompt_json, model_id, model_path = './models/all-MiniLM-L6-v2/', add_lower_threshold = 0.3, add_upper_threshold = 0.5, remove_lower_threshold = 0.1, remove_upper_threshold = 0.5): """ Function that recommends prompts additions or removals using a local model. Args: prompt: The entered prompt text. prompt_json: Json file populated with embeddings. model_id: Id of the local model. model_path: Path to the local model. Returns: Prompt values to add or remove. Raises: Nothing. """ if(model_id == 'baai/bge-large-en-v1.5' ): json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json' umap_model = load_ParametricUMAP('./models/umap/BAAI/bge-large-en-v1.5/') elif(model_id == 'intfloat/multilingual-e5-large'): json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json' umap_model = load_ParametricUMAP('./models/umap/intfloat/multilingual-e5-large/') else: # fall back to all-minilm as default json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json' umap_model = load_ParametricUMAP('./models/umap/sentence-transformers/all-MiniLM-L6-v2/') prompt_json = json.load(open(json_file)) # Output initialization out, out['input'], out['add'], out['remove'] = {}, {}, {}, {} input_items, items_to_add, items_to_remove = [], [], [] # Spliting prompt into sentences input_sentences = split_into_sentences(prompt) # Recommendation of values to add to the current prompt # Using only the last sentence for the add recommendation model = SentenceTransformer(model_path) input_embedding = model.encode(input_sentences[-1]) for v in prompt_json['positive_values']: # Dealing with values without prompts and makinig sure they have the same dimensions if(len(v['centroid']) == len(input_embedding)): if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > add_lower_threshold): closer_prompt = -1 for p in v['prompts']: d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding'])) # The sentence_threshold is being used as a ceiling meaning that for high similarities the sentence/value might already be presente in the prompt # So, we don't want to recommend adding something that is already there if(d_prompt > closer_prompt and d_prompt > add_lower_threshold and d_prompt < add_upper_threshold): closer_prompt = d_prompt items_to_add.append({ 'value': v['label'], 'prompt': p['text'], 'similarity': d_prompt, 'x': p['x'], 'y': p['y']}) out['add'] = items_to_add # Recommendation of values to remove from the current prompt i = 0 # Recommendation of values to remove from the current prompt for sentence in input_sentences: input_embedding = model.encode(sentence) # local # Obtaining XY coords for input sentences from a parametric UMAP model if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''): embeddings_umap = umap_model.transform(tf.expand_dims(pd.DataFrame(input_embedding), axis=0)) input_items.append({ 'sentence': sentence, 'x': str(embeddings_umap[0][0]), 'y': str(embeddings_umap[0][1]) }) for v in prompt_json['negative_values']: # Dealing with values without prompts and makinig sure they have the same dimensions if(len(v['centroid']) == len(input_embedding)): if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > remove_lower_threshold): closer_prompt = -1 for p in v['prompts']: d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding'])) # A more restrict threshold is used here to prevent false positives # The sentence_threhold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts # So, yes, we want to recommend the revolval of something adversarial we've found if(d_prompt > closer_prompt and d_prompt > remove_upper_threshold): closer_prompt = d_prompt items_to_remove.append({ 'value': v['label'], 'sentence': sentence, 'sentence_index': i, 'closest_harmful_sentence': p['text'], 'similarity': d_prompt, 'x': p['x'], 'y': p['y']}) out['remove'] = items_to_remove i += 1 out['input'] = input_items out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True) values_map = {} for item in out['add'][:]: if(item['value'] in values_map): out['add'].remove(item) else: values_map[item['value']] = item['similarity'] out['add'] = out['add'][0:5] out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True) values_map = {} for item in out['remove'][:]: if(item['value'] in values_map): out['remove'].remove(item) else: values_map[item['value']] = item['similarity'] out['remove'] = out['remove'][0:5] return out