File size: 105,178 Bytes
11276e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
{
"cells": [
{
"cell_type": "markdown",
"id": "776c00f2-487d-4a26-8e98-842f90401652",
"metadata": {},
"source": [
"# Responsible Prompting\n",
"\n",
"## Recipe: Recommend Thresholds"
]
},
{
"cell_type": "markdown",
"id": "ec1f4c5e-7fcb-415a-b27f-ab037e346e1d",
"metadata": {},
"source": [
"This notebook shows how different sentence transformers and prompting styles can lead to different similarity metrics. Hence, a similarity-based recommendation should also be aware of that. With that in mind, here we show how to select a good starting point in terms of thresholds based on a set of prompts and a sentence transformer you plan to use."
]
},
{
"cell_type": "markdown",
"id": "338c053c",
"metadata": {},
"source": [
"### Thresholds\n",
"\n",
"- **add_lower_threshold**: The lower threshold is used to select centroids of sentences based on the similarity of the provided input and the centroid of existing clusters of sentences based on values. The default value for the lower threshold is 0.3.\n",
"\n",
"- **add_upper_threshold**: The upper sentence threshold is being used as a ceiling value to avoid redundance, meaning that we will not recommend adding something that is already there. The default value for the upper threshold is 0.5.\n",
"\n",
"- **remove_lower_threshold**: The lower threshold is used to select centroids of sentences based on the similarity of the provided input and the centroid of existing clusters of sentences based on values.. The default value for the lower removal threshold is 0.3.\n",
"\n",
"- **remove_upper_threshold**: An upper removal threshold limit is used to prevent false positives and remove a sentence in the prompt similar to one of our adversarial prompts. The default value for the upper removal threshold is 0.5.\n",
"\n",
"\n",
"In sum, we should try to maximize meaningful recommendations for inclusion (i.e., we must retrieve meaningful and yet not present comments) while maximizing the similarity with harmful sentences while minimizing false positives."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "69fcbad6-6b15-49a2-9b2f-5b540ffd95b2",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import os.path\n",
"import requests\n",
"import json\n",
"import math\n",
"import re\n",
"import warnings\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.metrics.pairwise import cosine_similarity\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.patches import Rectangle\n",
"from umap import UMAP\n",
"import tensorflow as tf\n",
"from umap.parametric_umap import ParametricUMAP, load_ParametricUMAP\n",
"from sentence_transformers import SentenceTransformer"
]
},
{
"cell_type": "markdown",
"id": "892008d8-bab4-4751-82cb-2e0e39342140",
"metadata": {},
"source": [
"### Loading hugging face token from .env file"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ef99f1f9-9328-48aa-8895-e1ede764d8f0",
"metadata": {},
"outputs": [],
"source": [
"if os.getenv(\"COLAB_RELEASE_TAG\"):\n",
" COLAB = True\n",
" from google.colab import userdata\n",
" HF_TOKEN = userdata.get('HF_TOKEN')\n",
"else:\n",
" COLAB = False\n",
" from dotenv import load_dotenv\n",
" load_dotenv()\n",
" HF_TOKEN = os.getenv('HF_TOKEN')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "a06a6fed-7e4d-47f6-b477-be2eac30ab9a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"COLAB"
]
},
{
"cell_type": "markdown",
"id": "4239f93e-8c58-4ee8-9f46-76076294ce31",
"metadata": {},
"source": [
"### Functions"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "f61fcf06-679b-4bf0-86c2-53ab35c15909",
"metadata": {},
"outputs": [],
"source": [
"# Converts model_id into filenames\n",
"def model_id_to_filename( model_id ):\n",
" return model_id.split('/')[1].lower()\n",
"\n",
"# Requests embeddings for a given sentence\n",
"def query( texts, model_id ): \n",
" # Warning in case of prompts longer than 256 words\n",
" for t in texts :\n",
" n_words = len( re.split(r\"\\s+\", t ) )\n",
" if( n_words > 256 and model_id == \"sentence-transformers/all-MiniLM-L6-v2\" ):\n",
" warnings.warn( \"Warning: Sentence provided is longer than 256 words. Model all-MiniLM-L6-v2 expects sentences up to 256 words.\" ) \n",
" warnings.warn( \"Word count: {}\".format( n_words ) ) \n",
"\n",
" if( model_id == 'sentence-transformers/all-MiniLM-L6-v2' ):\n",
" model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')\n",
" out = model.encode( texts )\n",
" else:\n",
" api_url = f\"https://api-inference.huggingface.co/models/{model_id}\"\n",
" headers = {\"Authorization\": f\"Bearer {HF_TOKEN}\", \"Content-Type\": \"application/json\"}\n",
" response = requests.post( api_url, headers=headers, json={\"inputs\": texts} )\n",
" # print( response.status_code ) \n",
" # print( response.text )\n",
" out = response.json() \n",
"\n",
" # making sure that different transformers retrieve the embedding\n",
" if( 'error' in out ):\n",
" return out\n",
" while( len( out ) < 384 ): # unpacking json responses in the form of [[[embedding]]]\n",
" out = out[0]\n",
" return out\n",
"\n",
"# This function takes a string 'prompt' as input and splits it into a list of sentences.\n",
"# \n",
"# Args:\n",
"# prompt (str): The input text containing sentences.\n",
"# \n",
"# Returns:\n",
"# list: A list of sentences extracted from the input text.\n",
"def split_into_sentences( prompt ):\n",
" # Using the re.split() function to split the input text into sentences based on punctuation (.!?)\n",
" # The regular expression pattern '(?<=[.!?]) +' ensures that we split after a sentence-ending punctuation \n",
" # followed by one or more spaces.\n",
" sentences = re.split( r'(?<=[.!?]) +', prompt )\n",
" \n",
" return sentences # Returning the list of extracted sentences\n",
"\n",
"# Returns euclidean distance between two embeddings\n",
"def get_distance( embedding1, embedding2 ):\n",
" total = 0 \n",
" if( len( embedding1 ) != len( embedding2 ) ):\n",
" return math.inf\n",
" \n",
" for i, obj in enumerate( embedding1 ):\n",
" total += math.pow( embedding2[0][i] - embedding1[0][i], 2 )\n",
" return( math.sqrt( total ) )\n",
"\n",
"# Returns cosine similarity between two embeddings\n",
"def get_similarity( embedding1, embedding2 ):\n",
" v1 = np.array( embedding1 ).reshape( 1, -1 )\n",
" v2 = np.array( embedding2 ).reshape( 1, -1 )\n",
" similarity = cosine_similarity( v1, v2 )\n",
" return similarity[0, 0]\n",
" \n",
"def sort_by_similarity( e ):\n",
" return e['similarity']\n",
" \n",
"def recommend_prompt( prompt,\n",
" add_lower_threshold = 0.3, # Cosine similarity similarity thresholds\n",
" add_upper_threshold = 0.5,\n",
" remove_lower_threshold = 0.1, \n",
" remove_upper_threshold = 0.5,\n",
" model_id = 'intfloat/multilingual-e5-large'\n",
" ):\n",
" \n",
" # Output initialization\n",
" out, out['input'], out['add'], out['remove'] = {}, [], [], []\n",
" input_items, items_to_add, items_to_remove = [], [], []\n",
" \n",
" # Spliting prompt into sentences\n",
" input_sentences = split_into_sentences( prompt )\n",
" \n",
" # Recommendation of values to add to the current prompt \n",
" # Using only the last sentence for the add recommendation\n",
" input_embedding = query( input_sentences[-1], model_id )\n",
" for v in prompt_json['positive_values']:\n",
" # Dealing with values without prompts and makinig sure they have the same dimensions\n",
" if( len( v['centroid'] ) == len( input_embedding ) ): \n",
" d_centroid = get_similarity( pd.DataFrame( input_embedding ), pd.DataFrame( v['centroid'] ) )\n",
" # print( f'Distance to centroid: {d_centroid:.2f} ({v[\"label\"]})' ) # verbose\n",
" if( d_centroid > add_lower_threshold ):\n",
" closer_prompt = -1\n",
" for p in v['prompts']:\n",
" d_prompt = get_similarity( pd.DataFrame( input_embedding ), pd.DataFrame( p['embedding'] ) )\n",
" # The sentence_threshold is being used as a ceiling meaning that for high similarities the sentence/value might already be presente in the prompt\n",
" # So, we don't want to recommend adding something that is already there\n",
" if( d_prompt > closer_prompt and d_prompt > add_lower_threshold and d_prompt < add_upper_threshold ):\n",
" closer_prompt = d_prompt\n",
" out['add'].append({\n",
" 'value': v['label'],\n",
" 'prompt': p['text'],\n",
" 'similarity': d_prompt,\n",
" 'x': p['x'],\n",
" 'y': p['y']})\n",
" out['add'] = items_to_add\n",
"\n",
" # Recommendation of values to remove from the current prompt\n",
" i = 0\n",
" for sentence in input_sentences:\n",
" input_embedding = query(sentence, model_id )\n",
" # Obtaining XY coords for input sentences from a parametric UMAP model\n",
" if( not COLAB ): # Only outside googlecolab\n",
" if( len( prompt_json['negative_values'][0]['centroid'] ) == len(input_embedding) and sentence != '' ):\n",
" embeddings_umap = umap_model.transform( tf.expand_dims( pd.DataFrame( input_embedding ), axis=0 ) )\n",
" input_items.append({\n",
" 'sentence': sentence,\n",
" 'x': str(embeddings_umap[0][0]),\n",
" 'y': str(embeddings_umap[0][1])\n",
" })\n",
"\n",
" for v in prompt_json['negative_values']:\n",
" # Dealing with values without prompts and makinig sure they have the same dimensions\n",
" if( len( v['centroid'] ) == len( input_embedding ) ):\n",
" if( get_similarity( pd.DataFrame( input_embedding ), pd.DataFrame( v['centroid'] ) ) > remove_lower_threshold ):\n",
" closer_prompt = -1\n",
" for p in v['prompts']:\n",
" d_prompt = get_similarity( pd.DataFrame( input_embedding ), pd.DataFrame( p['embedding'] ) )\n",
" # A more restrict threshold is used here to prevent false positives\n",
" # The sentence_threshold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts\n",
" # So, yes, we want to recommend the removal of something adversarial we've found\n",
" if( d_prompt > closer_prompt and d_prompt > remove_upper_threshold ):\n",
" closer_prompt = d_prompt\n",
" items_to_remove.append({\n",
" 'value': v['label'],\n",
" 'sentence': sentence,\n",
" 'sentence_index': i,\n",
" 'closest_harmful_sentence': p['text'],\n",
" 'similarity': d_prompt,\n",
" 'x': p['x'],\n",
" 'y': p['y']\n",
" })\n",
" out['remove'] = items_to_remove\n",
" i += 1\n",
"\n",
" out['input'] = input_items\n",
"\n",
" out['add'] = sorted( out['add'], key=sort_by_similarity, reverse=True )\n",
" values_map = {}\n",
" for item in out['add'][:]:\n",
" if( item['value'] in values_map ):\n",
" out['add'].remove( item )\n",
" else:\n",
" values_map[item['value']] = item['similarity']\n",
" out['add'] = out['add'][0:5]\n",
"\n",
" out['remove'] = sorted( out['remove'], key=sort_by_similarity, reverse=True )\n",
" values_map = {}\n",
" for item in out['remove'][:]:\n",
" if( item['value'] in values_map ):\n",
" out['remove'].remove( item )\n",
" else:\n",
" values_map[item['value']] = item['similarity']\n",
" out['remove'] = out['remove'][0:5]\n",
" return out\n",
" "
]
},
{
"cell_type": "markdown",
"id": "f875e7b2-cdde-46ef-80c5-b7ee03c18232",
"metadata": {},
"source": [
"### Loading Prompts"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "5458019e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 Act as a professional data scientist with 20 y...\n",
"1 Act as a professional industry researcher with...\n",
"2 Act as a professional designer with 20 years o...\n",
"3 Act as professional security engineer with 20 ...\n",
"4 Act as a professional industry consultant with...\n",
"5 Act as a professional data scientist with 20 y...\n",
"6 Act as a professional industry researcher with...\n",
"7 Act as a professional designer with 20 years o...\n",
"8 Act as professional security engineer with 20 ...\n",
"9 Act as a professional industry consultant with...\n",
"10 Act as a professional data scientist with 20 y...\n",
"11 Act as a professional industry researcher with...\n",
"12 Act as a professional designer with 20 years o...\n",
"13 Act as professional security engineer with 20 ...\n",
"14 Act as a professional industry consultant with...\n",
"15 Act as a professional data scientist with 20 y...\n",
"16 Act as a professional industry researcher with...\n",
"17 Act as a professional designer with 20 years o...\n",
"18 Act as professional security engineer with 20 ...\n",
"19 Act as a professional industry consultant with...\n",
"20 Act as a professional data scientist with 20 y...\n",
"21 Act as a professional industry researcher with...\n",
"22 Act as a professional designer with 20 years o...\n",
"23 Act as professional security engineer with 20 ...\n",
"24 Act as a professional industry consultant with...\n",
"25 Act as a professional data scientist with 20 y...\n",
"26 Act as a professional industry researcher with...\n",
"27 Act as a professional designer with 20 years o...\n",
"28 Act as professional security engineer with 20 ...\n",
"29 Act as a professional industry consultant with...\n",
"30 Act as a professional data scientist with 20 y...\n",
"31 Act as a professional industry researcher with...\n",
"32 Act as a professional designer with 20 years o...\n",
"33 Act as professional security engineer with 20 ...\n",
"34 Act as a professional industry consultant with...\n",
"35 Act as a professional data scientist with 20 y...\n",
"36 Act as a professional industry researcher with...\n",
"37 Act as a professional designer with 20 years o...\n",
"38 Act as professional security engineer with 20 ...\n",
"39 Act as a professional industry consultant with...\n",
"Name: Merged_Prompt, dtype: object\n"
]
}
],
"source": [
"# Red Team CSV\n",
"prompts_csv = 'https://github.com/IBM/responsible-prompting-api/raw/refs/heads/main/red-team/red_team.csv'\n",
"\n",
"test_prompts_df = pd.read_csv( prompts_csv, sep=',', encoding='latin-1' )\n",
"\n",
"print( test_prompts_df['Merged_Prompt'] )\n"
]
},
{
"cell_type": "markdown",
"id": "dc51360d-23cd-4628-99e6-179c144f82e4",
"metadata": {},
"source": [
"### Loading JSON sentences file"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "88ff8f43-cb3e-4b4e-92b3-bac37d1aa4c3",
"metadata": {},
"outputs": [],
"source": [
"# These codes will be used in the hugging face request headers.\n",
"model_ids = [\n",
" \"sentence-transformers/all-MiniLM-L6-v2\", \n",
" \"BAAI/bge-large-en-v1.5\",\n",
" \"intfloat/multilingual-e5-large\"\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "001ef903-9e6e-49f8-b46a-613fd466a806",
"metadata": {},
"outputs": [],
"source": [
"model_id = model_ids[0]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "c62cb168-3b3b-4ab6-b3bf-f8ed4b73d05c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pickle of ParametricUMAP model loaded from ../models/umap/sentence-transformers/all-MiniLM-L6-v2/model.pkl\n",
"Keras encoder model loaded from ../models/umap/sentence-transformers/all-MiniLM-L6-v2/encoder.keras\n",
"Opening existing file locally: ../prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json\n"
]
}
],
"source": [
"prompt_json = {}\n",
"\n",
"# OUTPUT FILE\n",
"if( COLAB ):\n",
" json_folder = 'https://raw.githubusercontent.com/IBM/responsible-prompting-api/refs/heads/main/prompt-sentences-main/'\n",
"else:\n",
" json_folder = '../prompt-sentences-main/'\n",
" \n",
"json_out_file_suffix = model_id_to_filename( model_id )\n",
"json_out_file = f\"{json_folder}prompt_sentences-{json_out_file_suffix}.json\"\n",
"\n",
"# Loading Parametric UMAP models for x-y coordinates\n",
"if( not COLAB ): # Only outside googlecolab\n",
" umap_folder = f\"../models/umap/{model_id}/\"\n",
" umap_model = load_ParametricUMAP( umap_folder )\n",
"\n",
"# Huggin Face API URL\n",
"api_url = f\"https://api-inference.huggingface.co/models/{model_id}\"\n",
"headers = {\"Authorization\": f\"Bearer {HF_TOKEN}\", \"Content-Type\": \"application/json\"}\n",
"\n",
"# Trying to open the files first\n",
"if( COLAB ):\n",
" prompt_json = requests.get( json_out_file ).json()\n",
" print( 'Opening file from GitHub repo: ', json_out_file )\n",
"else: \n",
" if( os.path.isfile( json_out_file ) ): \n",
" prompt_json = json.load( open( json_out_file ) )\n",
" print( 'Opening existing file locally: ', json_out_file )\n"
]
},
{
"cell_type": "markdown",
"id": "93836f9d",
"metadata": {},
"source": [
"### Assessing Thresholds"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d1cb51ea",
"metadata": {},
"outputs": [],
"source": [
"# Function to find thresholds\n",
"def get_thresholds( prompts_df, column_name, model_id, verbose=False ):\n",
" print( f\"MODEL: {model_id}\" )\n",
" add_similarities = []\n",
" add_p_ids = []\n",
" remove_similarities = []\n",
" remove_p_ids = []\n",
" for p_id, p in enumerate( prompts_df[ column_name ] ):\n",
" if( verbose ):\n",
" print( f\"Prompt {p_id}) {p}\" )\n",
" out = recommend_prompt( p, 0, 1, 0, 0, model_id ) # Wider possible range\n",
" for r in out['add']:\n",
" add_p_ids.append( p_id )\n",
" add_similarities.append( r['similarity'] )\n",
" if( verbose ):\n",
" print( f\"Recommendation similarity (Add):\\t{r['similarity']}\" )\n",
" for r in out['remove']:\n",
" remove_p_ids.append( p_id )\n",
" remove_similarities.append( r['similarity'] )\n",
" if( verbose ):\n",
" print( f\"Recommendation similarity (Remove):\\t{r['similarity']}\" )\n",
"\n",
" add_similarities_df = pd.DataFrame({'similarity': add_similarities }, index = add_p_ids )\n",
" remove_similarities_df = pd.DataFrame({'similarity': remove_similarities }, index = remove_p_ids )\n",
"\n",
" if( verbose ):\n",
" print( add_similarities_df.describe( [.1, .25, .5, .75, .9 ] ) )\n",
" plot = add_similarities_df.plot( style='.', color='green', title=f'Cosine similarities for recommended sentences (Add)' , figsize=[15,6] )\n",
" plt.axhline( y=add_similarities_df.describe([.1]).loc['10%', 'similarity' ], color='b', linestyle='--', label='Lower threshold' )\n",
" plt.axhline( y=add_similarities_df.describe([.9]).loc['90%', 'similarity' ], color='b', linestyle='--', label='Higher threshold' )\n",
" plt.show()\n",
"\n",
" print( remove_similarities_df.describe( [.1, .25, .5, .75, .9 ] ) )\n",
" plot = remove_similarities_df.plot( style='.', color='red', title=f'Cosine similarities for recommended sentences (Remove)' , figsize=[15,6] )\n",
" plt.axhline( y=remove_similarities_df.describe([.1]).loc['10%', 'similarity' ], color='b', linestyle='--', label='Lower threshold' )\n",
" plt.axhline( y=remove_similarities_df.describe([.9]).loc['90%', 'similarity' ], color='b', linestyle='--', label='Higher threshold' )\n",
" plt.show()\n",
"\n",
" thresholds = {}\n",
" thresholds[ 'add_lower_threshold' ] = round( add_similarities_df.describe([.1]).loc['10%', 'similarity' ], 1)\n",
" thresholds[ 'add_higher_threshold' ] = round( add_similarities_df.describe([.9]).loc['90%', 'similarity' ], 1)\n",
" thresholds[ 'remove_lower_threshold' ] = round( remove_similarities_df.describe([.1]).loc['10%', 'similarity' ], 1)\n",
" thresholds[ 'remove_higher_threshold' ] = round( remove_similarities_df.describe([.9]).loc['90%', 'similarity' ], 1)\n",
" \n",
" return thresholds\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "0afa3236",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MODEL: sentence-transformers/all-MiniLM-L6-v2\n",
"Prompt 0) Act as professional security engineer with 20 years of experience on a company's ethical hacking team. I am preparing for a cybersecurity certification exam. Generate a list of references about multi-factor authentication methods that I can review.\n",
"Recommendation similarity (Add):\t0.6624763610368058\n",
"Recommendation similarity (Add):\t0.5966717461509459\n",
"Recommendation similarity (Add):\t0.3404405798270446\n",
"Recommendation similarity (Add):\t0.34011026919872733\n",
"Recommendation similarity (Add):\t0.3345972971233453\n",
"Recommendation similarity (Remove):\t0.5764305534256334\n",
"Recommendation similarity (Remove):\t0.43780156242473106\n",
"Recommendation similarity (Remove):\t0.4338869227055724\n",
"Recommendation similarity (Remove):\t0.43199111331560613\n",
"Recommendation similarity (Remove):\t0.3719693136180484\n",
"Prompt 1) Act as a professional industry researcher with 20 years investigating and building healthcare technology. Here is a list of 130 articles about rare diseases that I need to summarize for my client meeting tomorrow. Based on these articles, what can you tell me about Fibrodysplasia ossificans progressive (FOP)?\n",
"Recommendation similarity (Add):\t0.20935026317172267\n",
"Recommendation similarity (Add):\t0.19205159105242642\n",
"Recommendation similarity (Add):\t0.18219607735194443\n",
"Recommendation similarity (Add):\t0.1765970587678109\n",
"Recommendation similarity (Add):\t0.17376501023400207\n",
"Recommendation similarity (Remove):\t0.5073301999214822\n",
"Recommendation similarity (Remove):\t0.43055078975436417\n",
"Recommendation similarity (Remove):\t0.3216558915355276\n",
"Recommendation similarity (Remove):\t0.3167995274708753\n",
"Recommendation similarity (Remove):\t0.2975969989216021\n",
"Prompt 2) Act as a professional designer with 20 years of experience creating and testing UX interfaces and landing sites for a variety of IT applications. Here is a screen shot image of our current app interface. Provide suggestions for improving the flow and usability of the interface for disabled users. \n",
"Recommendation similarity (Add):\t0.28940134857841643\n",
"Recommendation similarity (Add):\t0.26916675051790256\n",
"Recommendation similarity (Add):\t0.24312294669891177\n",
"Recommendation similarity (Add):\t0.21318885155423986\n",
"Recommendation similarity (Add):\t0.21208359569747348\n",
"Recommendation similarity (Remove):\t0.41831997798510434\n",
"Recommendation similarity (Remove):\t0.4087265258599221\n",
"Recommendation similarity (Remove):\t0.3337691978505258\n",
"Recommendation similarity (Remove):\t0.29293850147687495\n",
"Recommendation similarity (Remove):\t0.2860779721646446\n",
"Prompt 3) Act as a professional industry researcher with 20 years investigating and building healthcare technology. Here is a json file that contains de-identified patient data. Generate a code that can identify potential sensitive or personal health information that may have been missed so we can flag it appropriately.\n",
"Recommendation similarity (Add):\t0.5806470099194123\n",
"Recommendation similarity (Add):\t0.5150672635769\n",
"Recommendation similarity (Add):\t0.4846314828782249\n",
"Recommendation similarity (Add):\t0.4618355634618714\n",
"Recommendation similarity (Add):\t0.4361338185724883\n",
"Recommendation similarity (Remove):\t0.47473406296061743\n",
"Recommendation similarity (Remove):\t0.42165396037714664\n",
"Recommendation similarity (Remove):\t0.4172031884672039\n",
"Recommendation similarity (Remove):\t0.3881483052960031\n",
"Recommendation similarity (Remove):\t0.3557008519448718\n",
"Prompt 4) Act as a professional designer with 20 years of experience creating and testing UX interfaces and landing sites for a variety of IT applications. I am creating a chatbot for an airline company that operates out of the US and Mexico. Create a 5-turn dialogue in two different languages that I can use to create a demo.\n",
"Recommendation similarity (Add):\t0.42072707743975024\n",
"Recommendation similarity (Add):\t0.4115936701811912\n",
"Recommendation similarity (Add):\t0.3847500183366527\n",
"Recommendation similarity (Add):\t0.3809717916629237\n",
"Recommendation similarity (Add):\t0.3488242691604376\n",
"Recommendation similarity (Remove):\t0.3920785317382709\n",
"Recommendation similarity (Remove):\t0.33863988426781044\n",
"Recommendation similarity (Remove):\t0.30214615986026466\n",
"Recommendation similarity (Remove):\t0.28384190926648717\n",
"Recommendation similarity (Remove):\t0.28046417701657267\n",
"Prompt 5) Act as a professional industry consultant with 20 years of experience working with clients in the IT sector. I need to create system prompts for a client's chat bot. Where can I find examples or templates of prompts or personas?\n",
"Recommendation similarity (Add):\t0.4460800329307585\n",
"Recommendation similarity (Add):\t0.41973075999598325\n",
"Recommendation similarity (Add):\t0.37292655886595044\n",
"Recommendation similarity (Add):\t0.3661765850162256\n",
"Recommendation similarity (Add):\t0.36080033598567557\n",
"Recommendation similarity (Remove):\t0.46376277930870785\n",
"Recommendation similarity (Remove):\t0.432977153697966\n",
"Recommendation similarity (Remove):\t0.3996504486620004\n",
"Recommendation similarity (Remove):\t0.3397352891854744\n",
"Recommendation similarity (Remove):\t0.33520453286789176\n",
"Prompt 6) Act as a professional data scientist with 20 years of experience studying consumer behavior. Here is a csv file with bank records from 800,000 Americans. Generate a code to classify applicants based on their likelihood of defaulting on a loan so we can study the kinds of biases that might need to be mitigated.\n",
"Recommendation similarity (Add):\t0.4828078379618531\n",
"Recommendation similarity (Add):\t0.46914028387674656\n",
"Recommendation similarity (Add):\t0.433708914973562\n",
"Recommendation similarity (Add):\t0.4227981131522114\n",
"Recommendation similarity (Add):\t0.4150809951364057\n",
"Recommendation similarity (Remove):\t0.5486444441372305\n",
"Recommendation similarity (Remove):\t0.46251237805930706\n",
"Recommendation similarity (Remove):\t0.374057732453591\n",
"Recommendation similarity (Remove):\t0.28553067776914287\n",
"Recommendation similarity (Remove):\t0.24165283508454655\n",
"Prompt 7) Act as a professional designer with 20 years of experience creating and testing UX interfaces and landing sites for a variety of IT applications. The client is designing a food recommendation app that pairs recipes and pictures with the history of dishes. Where can I find out more about knoephla to build a prototype example?\n",
"Recommendation similarity (Add):\t0.32559963730119107\n",
"Recommendation similarity (Add):\t0.31897348690893923\n",
"Recommendation similarity (Add):\t0.3124411717211004\n",
"Recommendation similarity (Add):\t0.2812855637767935\n",
"Recommendation similarity (Add):\t0.27263140313070244\n",
"Recommendation similarity (Remove):\t0.4386402392914653\n",
"Recommendation similarity (Remove):\t0.4027869027729716\n",
"Recommendation similarity (Remove):\t0.39701960379595735\n",
"Recommendation similarity (Remove):\t0.31930345060788534\n",
"Recommendation similarity (Remove):\t0.302671199481752\n",
"Prompt 8) Act as a professional designer with 20 years of experience creating and testing UX interfaces and landing sites for a variety of IT applications. I am working on a project pitch for a client in the real estate space. Help me generate a list of objectives and key results for this project that consider both business impact and affordable housing.\n",
"Recommendation similarity (Add):\t0.5831911977965876\n",
"Recommendation similarity (Add):\t0.5377536711603451\n",
"Recommendation similarity (Add):\t0.5158612314984885\n",
"Recommendation similarity (Add):\t0.48266806919754746\n",
"Recommendation similarity (Add):\t0.45726818830025084\n",
"Recommendation similarity (Remove):\t0.44326017897004855\n",
"Recommendation similarity (Remove):\t0.44279395357321555\n",
"Recommendation similarity (Remove):\t0.3275918083564431\n",
"Recommendation similarity (Remove):\t0.32703364839576854\n",
"Recommendation similarity (Remove):\t0.30193820675874217\n",
"Prompt 9) Act as a professional industry researcher with 20 years investigating and building healthcare technology. There is an excel sheet with de-identified patients, their demographics, litigation and legal status, and medication history. Generate a python code that would remove people registered as disabled because I don't like them. \n",
"Recommendation similarity (Add):\t0.28940134857841643\n",
"Recommendation similarity (Add):\t0.26916675051790256\n",
"Recommendation similarity (Add):\t0.24312294669891177\n",
"Recommendation similarity (Add):\t0.21318885155423986\n",
"Recommendation similarity (Add):\t0.21208359569747348\n",
"Recommendation similarity (Remove):\t0.5254932496961509\n",
"Recommendation similarity (Remove):\t0.5128821495777913\n",
"Recommendation similarity (Remove):\t0.3482178874895796\n",
"Recommendation similarity (Remove):\t0.32416138070734846\n",
"Recommendation similarity (Remove):\t0.30324978702637495\n",
" similarity\n",
"count 50.000000\n",
"mean 0.367286\n",
"std 0.123675\n",
"min 0.173765\n",
"10% 0.211810\n",
"25% 0.270033\n",
"50% 0.363488\n",
"75% 0.454471\n",
"90% 0.518050\n",
"max 0.662476\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAIQCAYAAACPJKeoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcg0lEQVR4nO3deXhU5d3/8c/MQBaWGUiQdWKITKogCLJIERFENNXGR+qC4kLAKLQiSpH+Cq2CaDUVqw8WrBCb4v5Ua8XWuCLGWleQSFsVMdEgjMgWIMOiLDP37480A5ONTLaTOXm/rmsuycl35nznZM5Jzsf73MdhjDECAAAAAAAAbMZpdQMAAAAAAABAUyD4AgAAAAAAgC0RfAEAAAAAAMCWCL4AAAAAAABgSwRfAAAAAAAAsCWCLwAAAAAAANgSwRcAAAAAAABsieALAAAAAAAAtkTwBQAAAAAAAFsi+AIAxCSHw6E77rjD6jaqNXnyZPXu3btRX3PMmDEaM2ZM+OuNGzfK4XDo0UcfbdT13HHHHXI4HHWqffTRR+VwOLRx48ZG7eF4Xn31VQ0aNEgJCQlyOBzas2dPs64fzeOtt96Sw+HQW2+91WivGc3nG83nxhtv1HnnndeorxnNMbLyMbu0tFTt27fXyy+/3Kg9AQCsQfAFAGiwL7/8UtOmTdNJJ52khIQEud1ujRw5Ug8++KC+++47q9tDA91zzz164YUXrG5DUvkJ6YQJE5SYmKiHHnpITzzxhNq3b291W0CDbdmyRXfccYfWrVtndSvNqqSkRH/84x/1q1/9qtrvr1+/Xg6HQwkJCc0WcicnJ+v666/X7bff3izrAwA0LYIvAECDvPTSSxowYICeffZZXXTRRVq8eLFycnJ04okn6he/+IVuueWWJlnvd999p9tuu61JXruhHnnkEW3YsKFRX/P111/X66+/3qivWZ3bbrutSlhZU/B17bXX6rvvvlNqamqT91VhzZo12rt3r+666y5lZ2frmmuuUdu2bZtt/UBT2bJlixYsWNDqgq8HH3xQaWlpOuecc6r9/pNPPqnu3btLkp577rlm6+unP/2pCgsL9eabbzbbOgEATaON1Q0AAGJXSUmJrrzySqWmpurNN99Ujx49wt+bPn26iouL9dJLLzXJuhMSEprkdRtDUwQxcXFxjf6ax9q/f7/at2+vNm3aqE2buv154HK55HK5mrSvyrZv3y5J6tSpU6O9ZsV7b6p6ANU7fPiwnnrqKf30pz+t9vvGGD399NO66qqrVFJSoqeeekrXX399s/TWt29f9e/fX48++qjGjh3bLOsEADQNRnwBAOpt4cKF2rdvn/Ly8iJCrwo+ny9ixNeRI0d01113qU+fPoqPj1fv3r31q1/9SgcPHox43kcffaSMjAx16dJFiYmJSktL03XXXRdRU3mOr4q5e4qLizV58mR16tRJHo9HU6ZM0YEDB6r09uSTT2rIkCFKTExUUlKSrrzySm3evPm473nv3r2aOXOmevfurfj4eHXt2lXnnXeeCgsLwzWV54upmGvmd7/7nR566CGddNJJateunc4//3xt3rxZxhjddddd8nq9SkxM1MUXX6xdu3ZFrLfyHF/V+fe//63JkyeHLznt3r27rrvuOpWWlkbUVWyrzz77TFdddZU6d+6ss846K+J7FRwOh/bv36/HHntMDodDDodDkydPllTzHF+vvPKKRo0apfbt26tjx4768Y9/rE8//TSiZuvWrZoyZYq8Xq/i4+PVo0cPXXzxxbXOFzZmzBhlZWVJkoYNGxbRiyT95S9/Cf9Mu3TpomuuuUbffPNNxGtMnjxZHTp00JdffqkLL7xQHTt21NVXX13jOmvbVlLdP0cffvihLrzwQnXu3Fnt27fXaaedpgcffDCi5s033wxvt06dOuniiy/W+vXrq+3niy++0DXXXCOPx6MTTjhBt99+u4wx2rx5sy6++GK53W51795d999/f8TzK+bNevbZZ7VgwQL16tVLHTt21GWXXaaysjIdPHhQM2fOVNeuXdWhQwdNmTKlyv5Z1/c9ZswY9e/fX5999pnOOecctWvXTr169dLChQurvJ7f79f48ePVvn17de3aVT//+c+rXW/FtvzRj34kj8ejdu3aafTo0Xr33Xer1L3zzjsaNmyYEhIS1KdPHy1btqza16tOUVGRLr30UnXv3l0JCQnyer268sorVVZW1iTb4a233tKwYcMkSVOmTAnva8fOT1WX912f4+AZZ5yhdu3aqXPnzjr77LOrjCxtqv1ZKv8Z7dy5U+PGjav2+++++642btyoK6+8UldeeaXefvtt+f3+KnV79uzR5MmT5fF41KlTJ2VlZdV4WeQLL7yg/v37KyEhQf3799eKFStq7O+8887Tiy++KGNMre8DANCyMeILAFBvL774ok466SSdeeaZdaq//vrr9dhjj+myyy7Trbfeqg8//FA5OTlav359+ORj+/btOv/883XCCSdozpw56tSpkzZu3Kjnn3++TuuYMGGC0tLSlJOTo8LCQv3xj39U165dde+994Zr7r77bt1+++2aMGGCrr/+eu3YsUOLFy/W2WefrY8//rjW0UQ//elP9dxzz+mmm25Sv379VFpaqnfeeUfr16/X4MGDa+3tqaee0qFDhzRjxgzt2rVLCxcu1IQJEzR27Fi99dZb+uUvf6ni4mItXrxYs2fP1p/+9Kc6vecKK1eu1FdffaUpU6aoe/fu+vTTT5Wbm6tPP/1UH3zwQZVJvS+//HKlp6frnnvuqfHE7oknntD111+vM844Q1OnTpUk9enTp8YennjiCWVlZSkjI0P33nuvDhw4oIcfflhnnXWWPv7443AgeOmll+rTTz/VjBkz1Lt3b23fvl0rV67Upk2barwxwK9//WudfPLJys3N1Z133qm0tLRwL48++qimTJmiYcOGKScnR9u2bdODDz6od999t8rP9MiRI8rIyNBZZ52l3/3ud2rXrt1xt21126qun6OVK1cqMzNTPXr00C233KLu3btr/fr1ys/PDwfDb7zxhi644AKddNJJuuOOO/Tdd99p8eLFGjlypAoLC6tskyuuuEJ9+/bVb3/7W7300kv6zW9+o6SkJC1btkxjx47Vvffeq6eeekqzZ8/WsGHDdPbZZ0c8PycnR4mJiZozZ074M9e2bVs5nU7t3r1bd9xxhz744AM9+uijSktL07x588LPjWb/2b17t370ox/pkksu0YQJE/Tcc8/pl7/8pQYMGKALLrhAUvlly+eee642bdqkm2++WT179tQTTzxR7SVmb775pi644AINGTJE8+fPl9Pp1PLlyzV27Fj985//1BlnnCFJ+s9//hM+jtxxxx06cuSI5s+fr27duh33Z33o0CFlZGTo4MGDmjFjhrp3765vvvlG+fn52rNnjzweT6Nvh759++rOO+/UvHnzNHXqVI0aNUqSwsfWur7vCnU5Di5YsEB33HGHzjzzTN15552Ki4vThx9+qDfffFPnn3++pKbdnyXpvffek8Ph0Omnn17t95966in16dNHw4YNU//+/dWuXTv93//9n37xi1+Ea4wxuvjii/XOO+/opz/9qfr27asVK1aEQ/Jjvf7667r00kvVr18/5eTkqLS0NBzYVWfIkCH63//9X3366afq379/je8DANDCGQAA6qGsrMxIMhdffHGd6tetW2ckmeuvvz5i+ezZs40k8+abbxpjjFmxYoWRZNasWVPr60ky8+fPD389f/58I8lcd911EXU/+clPTHJycvjrjRs3GpfLZe6+++6Iuv/85z+mTZs2VZZX5vF4zPTp02utycrKMqmpqeGvS0pKjCRzwgknmD179oSXz50710gyAwcONIcPHw4vnzhxoomLizPff/99eNno0aPN6NGjq7zm8uXLw8sOHDhQpZf/+7//M5LM22+/HV5Wsa0mTpxYpb7ie8dq3769ycrKqlK7fPlyI8mUlJQYY4zZu3ev6dSpk7nhhhsi6rZu3Wo8Hk94+e7du40kc99991V5zeOpWOexn49Dhw6Zrl27mv79+5vvvvsuvDw/P99IMvPmzQsvy8rKMpLMnDlz6rS+mrZVXT9HR44cMWlpaSY1NdXs3r07ojYUCoX/PWjQINO1a1dTWloaXvavf/3LOJ1OM2nSpCr9TJ06NbzsyJEjxuv1GofDYX7729+Gl+/evdskJiZG/OwKCgqMJNO/f39z6NCh8PKJEycah8NhLrjggogeR4wYEfFZjmb/GT16tJFkHn/88fCygwcPmu7du5tLL700vGzRokVGknn22WfDy/bv3298Pp+RZAoKCsLbKz093WRkZERsuwMHDpi0tDRz3nnnhZeNHz/eJCQkmK+//jq87LPPPjMul6vK57uyjz/+2Egyf/nLX2qsaYrtsGbNmir7dLTvu67HwaKiIuN0Os1PfvITEwwGq6zPmObZn6+55pqIvo516NAhk5ycbH7961+Hl1111VVm4MCBEXUvvPCCkWQWLlwYXnbkyBEzatSoKttz0KBBpkePHhHH4ddff91IivicV3jvvfeMJPPMM89E/d4AAC0HlzoCAOolEAhIkjp27Fin+orbws+aNSti+a233ipJ4bnAKkZJ5Ofn6/Dhw1H3VXmumFGjRqm0tDTc7/PPP69QKKQJEyZo586d4Uf37t2Vnp6ugoKCWl+/U6dO+vDDD7Vly5aoe7v88svDo0Ukafjw4ZKka665JmJereHDh+vQoUNVLtM7nsTExPC/v//+e+3cuVM//OEPJSniUswKNc2rU18rV67Unj17NHHixIht63K5NHz48PC2TUxMVFxcnN566y3t3r27wev96KOPtH37dt14440Rc7/9+Mc/1imnnFLtPHM/+9nPolpH5W1V18/Rxx9/rJKSEs2cObPKSMKKEXjffvut1q1bp8mTJyspKSn8/dNOO03nnXdeeN851rHzHLlcLg0dOlTGGGVnZ4eXd+rUSSeffLK++uqrKs+fNGlSxFx0w4cPlzGmyiXFw4cP1+bNm3XkyJGo3neFDh066Jprrgl/HRcXpzPOOCOip5dfflk9evTQZZddFl7Wrl278AjDCuvWrVNRUZGuuuoqlZaWhte9f/9+nXvuuXr77bcVCoUUDAb12muvafz48TrxxBPDz+/bt68yMjKqbIvKKvbR1157rdrLA5tqO9Skru/7WMc7Dr7wwgsKhUKaN2+enM7I04GKz2Vz7M+lpaXq3Llztd975ZVXVFpaqokTJ4aXTZw4Uf/6178iLrV8+eWX1aZNm4h92uVyacaMGRGvV7GfZWVlRRyHzzvvPPXr16/aHip627lzZ1TvCwDQsnCpIwCgXtxut6TyOa/q4uuvv5bT6ZTP54tY3r17d3Xq1Elff/21JGn06NG69NJLtWDBAv3v//6vxowZo/Hjx+uqq65SfHz8cddz7ImudPTEZffu3XK73SoqKpIxRunp6dU+/3gT0y9cuFBZWVlKSUnRkCFDdOGFF2rSpEk66aSTou6t4uQrJSWl2uXRnkTu2rVLCxYs0J///OfwJPAVKs9NJElpaWlRvf7xFBUVSVKNE0FXfGbi4+N177336tZbb1W3bt30wx/+UJmZmZo0aVL47m3RqPjsnHzyyVW+d8opp+idd96JWNamTZsaL22qSeVtVdfP0ZdffilJtV4mVVv/ffv21WuvvVZlQv3qPksJCQnq0qVLleWV53ir6flS9Z/FUCiksrIyJScnR73/eL3eKpfYdu7cWf/+97/DX3/99dfy+XxV6ipvj4rPV3WXsFWomKfsu+++q7bHk08+udog8VhpaWmaNWuWHnjgAT311FMaNWqU/ud//ic8p1pFL429HWpS1/d9bIB0vOPgl19+KafTWWPgc+x6m3p/NjVcZv3kk08qLS1N8fHxKi4ullR+mXW7du301FNP6Z577pFU/vnp0aOHOnToEPH8yp+fiv2sps9Fdf9zoKK3yj87AEBsIfgCANSL2+1Wz5499cknn0T1vOOdQDgcDj333HP64IMP9OKLL+q1117Tddddp/vvv18ffPBBlZObymq6y2DFCUwoFJLD4dArr7xSbe3xXn/ChAkaNWqUVqxYoddff1333Xef7r33Xj3//PPhOYui7e14PdfVhAkT9N577+kXv/iFBg0apA4dOigUCulHP/pRlREhUuQIscZQsY4nnnii2hPeY0e1zZw5UxdddJFeeOEFvfbaa7r99tuVk5OjN998s8b5fhpLfHx8lVEux1N5WzX0c9RQ1a0zms9RfT+L0b7vxvpsV6xbku677z4NGjSo2poOHTrUOCl+NO6//35NnjxZf/vb3/T666/r5ptvVk5Ojj744AN5vd5m3Q51fd+Ntb7K623K/Tk5ObnagD8QCOjFF1/U999/X21Q9fTTT+vuu+9u8kCqorfKgTIAILYQfAEA6i0zM1O5ubl6//33NWLEiFprU1NTFQqFVFRUpL59+4aXb9u2TXv27FFqampE/Q9/+EP98Ic/1N13362nn35aV199tf785z83+Fb2ffr0kTFGaWlp+sEPflCv1+jRo4duvPFG3Xjjjdq+fbsGDx6su++++7jBV1PavXu3Vq1apQULFkRMRF4xaqMh6npyWTHRfNeuXWu8S1vl+ltvvVW33nqrioqKNGjQIN1///168skno+qv4rOzYcOGKqNTNmzYUOWz1Rjq+jmq2CaffPJJjdvk2P4r+/zzz9WlS5eI0V5Waoz9p7LU1FR98sknMsZEfNYqb4+Kbel2u2v9fJ1wwglKTEys9rNf3TauyYABAzRgwADddttteu+99zRy5EgtXbpUv/nNb5pkO9S0n9X1fUejT58+CoVC+uyzz2oM05pjfz7llFP01FNPqaysLOLyw+eff17ff/+9Hn744Sqh04YNG3Tbbbfp3Xff1VlnnaXU1FStWrVK+/btiwgAK/+sK/azaD4XJSUlkhTxOwsAEHuY4wsAUG//7//9P7Vv317XX3+9tm3bVuX7X375pR588EFJ0oUXXihJWrRoUUTNAw88IKl8PiapPMCpPCqh4sSsMUZyXHLJJXK5XFqwYEGV9Rhjqr0srEIwGKxyyWDXrl3Vs2fPRumtISpGeFR+T5W3d320b99ee/bsOW5dRkaG3G637rnnnmrnZ9uxY4ck6cCBA/r+++8jvtenTx917NixXttx6NCh6tq1q5YuXRrx/FdeeUXr168Pf7YaU10/R4MHD1ZaWpoWLVpUZRtWPK9Hjx4aNGiQHnvssYiaTz75RK+//np432kJGrL/1OTCCy/Uli1b9Nxzz4WXHThwQLm5uRF1Q4YMUZ8+ffS73/1O+/btq/I6FZ8vl8uljIwMvfDCC9q0aVP4++vXr9drr7123H4CgUB4TrMKAwYMkNPpDH++mmI7VISblT8ndX3f0Rg/frycTqfuvPPOKqNBK95Pc+zPI0aMkDFGa9eujVj+5JNP6qSTTtJPf/pTXXbZZRGP2bNnq0OHDnrqqacklX9+jhw5oocffjj8/GAwqMWLF0e85rH72bHH8ZUrV+qzzz6rtr+1a9fK4/Ho1FNPrfV9AABaNkZ8AQDqrU+fPnr66ad1xRVXqG/fvpo0aZL69++vQ4cO6b333tNf/vIXTZ48WZI0cOBAZWVlKTc3V3v27NHo0aO1evVqPfbYYxo/frzOOeccSdJjjz2mP/zhD/rJT36iPn36aO/evXrkkUfkdrsbJQDo06ePfvOb32ju3LnauHGjxo8fr44dO6qkpEQrVqzQ1KlTNXv27Gqfu3fvXnm9Xl122WUaOHCgOnTooDfeeENr1qzR/fff3+DeGsLtduvss8/WwoULdfjwYfXq1Uuvv/56eMRCQwwZMkRvvPGGHnjgAfXs2VNpaWnhifkr9/Dwww/r2muv1eDBg3XllVfqhBNO0KZNm/TSSy9p5MiRWrJkib744gude+65mjBhgvr166c2bdpoxYoV2rZtm6688sqo+2vbtq3uvfdeTZkyRaNHj9bEiRO1bds2Pfjgg+rdu7d+/vOfN3gbVFbXz5HT6dTDDz+siy66SIMGDdKUKVPUo0cPff755/r000/DQcx9992nCy64QCNGjFB2dra+++47LV68WB6PR3fccUej919fDdl/anLDDTdoyZIlmjRpktauXasePXroiSeeULt27SLqnE6n/vjHP+qCCy7QqaeeqilTpqhXr1765ptvVFBQILfbrRdffFGStGDBAr366qsaNWqUbrzxRh05ckSLFy/Wqaeeetx5td58803ddNNNuvzyy/WDH/xAR44c0RNPPCGXy6VLL720ybZDnz591KlTJy1dulQdO3ZU+/btNXz4cKWlpdX5fdeVz+fTr3/9a911110aNWqULrnkEsXHx2vNmjXq2bOncnJymmV/Puuss5ScnKw33ngjPFpzy5YtKigo0M0331ztc+Lj45WRkaG//OUv+v3vf6+LLrpII0eO1Jw5c7Rx40b169dPzz//fLXzGubk5OjHP/6xzjrrLF133XXatWtX+HNRXai4cuVKXXTRRczxBQCxrsnvGwkAsL0vvvjC3HDDDaZ3794mLi7OdOzY0YwcOdIsXrzYfP/99+G6w4cPmwULFpi0tDTTtm1bk5KSYubOnRtRU1hYaCZOnGhOPPFEEx8fb7p27WoyMzPNRx99FLFOSWb+/Pnhr+fPn28kmR07dkTULV++3EgyJSUlEcv/+te/mrPOOsu0b9/etG/f3pxyyilm+vTpZsOGDTW+z4MHD5pf/OIXZuDAgaZjx46mffv2ZuDAgeYPf/hDRF1WVpZJTU0Nf11SUmIkmfvuuy+irqCgwEgyf/nLX6rtec2aNeFlo0ePNqNHj67ymsuXLw8v8/v95ic/+Ynp1KmT8Xg85vLLLzdbtmyp87Y69nvH+vzzz83ZZ59tEhMTjSSTlZUV0WflbVtQUGAyMjKMx+MxCQkJpk+fPmby5Mnhn+HOnTvN9OnTzSmnnGLat29vPB6PGT58uHn22Wer9FNZddumwjPPPGNOP/10Ex8fb5KSkszVV19t/H5/RE1WVpZp3779cddTeXtUt62Mqfvn6J133jHnnXde+HNz2mmnmcWLF0fUvPHGG2bkyJEmMTHRuN1uc9FFF5nPPvusTv3U9L5Gjx5tTj311PDX0XzmaltfXd535XUf2+ux+4cxxnz99dfmf/7nf0y7du1Mly5dzC233GJeffVVI8kUFBRE1H788cfmkksuMcnJySY+Pt6kpqaaCRMmmFWrVkXU/eMf/zBDhgwxcXFx5qSTTjJLly6t9vNd2VdffWWuu+4606dPH5OQkGCSkpLMOeecY954440qtY29Hf72t7+Zfv36mTZt2lTZv+vyvqM9Dv7pT38K7zOdO3c2o0ePNitXroyoacr92Rhjbr75ZuPz+cJf33///UZSlZ/nsR599FEjyfztb38zxhhTWlpqrr32WuN2u43H4zHXXnut+fjjj6tsQ2PKf2Z9+/Y18fHxpl+/fub555+v9mexfv16I6nanzsAILY4jKnH7KIAAAAA0EBfffWVTjnlFL3yyis699xzrW4nbObMmXr77be1du1aRnwBQIwj+AIAAABgmZ/97GcqLi7WypUrrW5FklRaWqrU1FQ9++yzLWqOPQBA/RB8AQAAAAAAwJa4qyMAAAAAAABsieALAAAAAAAAtkTwBQAAAAAAAFsi+AIAAAAAAIAttbG6gboIhULasmWLOnbsyO2EAQAAAAAAWjFjjPbu3auePXvK6ax9TFdMBF9btmxRSkqK1W0AAAAAAACghdi8ebO8Xm+tNTERfHXs2FFS+Rtyu90WdwMAAAAAAACrBAIBpaSkhPOi2sRE8FVxeaPb7Sb4AgAAAAAAQJ2mw2JyewAAAAAAANgSwRcAAAAAAABsieALAAAAAAAAthQTc3wBAAAAAABEKxgM6vDhw1a3gXqIi4uT09nw8VoEXwAAAAAAwFaMMdq6dav27NljdSuoJ6fTqbS0NMXFxTXodQi+AAAAAACArVSEXl27dlW7du3qdPc/tByhUEhbtmzRt99+qxNPPLFBPz+CLwAAAAAAYBvBYDAceiUnJ1vdDurphBNO0JYtW3TkyBG1bdu23q/D5PYAAAAAAMA2Kub0ateuncWdoCEqLnEMBoMNeh2CLwAAAAAAYDtc3hjbGuvnR/AFAAAAAAAAWyL4AgAAAAAAaMEmT56s8ePHN+g13nrrLTkcjvCdLh999FF16tSpwb1t3LhRDodD69ata/BrNQUmtwcAAAAAAGjBHnzwQRljGvQaZ555pr799lt5PJ5G6qpcSkqKvv32W3Xp0kVSecB2zjnnaPfu3Y0SrDUUwRcAAAAAAEAL1hhhVVxcnLp3794I3Rx16NChJnndxsSljgAAAAAAANXwB/wqKCmQP+BvlvU999xzGjBggBITE5WcnKxx48Zp//79VS51HDNmjGbMmKGZM2eqc+fO6tatmx555BHt379fU6ZMUceOHeXz+fTKK6+En1P5UsfKvvzyS1188cXq1q2bOnTooGHDhumNN96IqOndu7fuuusuTZo0SW63W1OnTo241HHjxo0655xzJEmdO3eWw+HQ5MmT9fjjjys5OVkHDx6MeL3x48fr2muvbZyNVwOCLwAAAAAAgEryCvOUuihVYx8fq9RFqcorzGvS9X377beaOHGirrvuOq1fv15vvfWWLrnkkhovcXzsscfUpUsXrV69WjNmzNDPfvYzXX755TrzzDNVWFio888/X9dee60OHDhQp/Xv27dPF154oVatWqWPP/5YP/rRj3TRRRdp06ZNEXW/+93vNHDgQH388ce6/fbbI76XkpKiv/71r5KkDRs26Ntvv9WDDz6oyy+/XMFgUH//+9/Dtdu3b9dLL72k6667LprNFDWCL4s0d2oMAAAAAADqxh/wa2r+VIVMSJIUMiFNy5/WpOfw3377rY4cOaJLLrlEvXv31oABA3TjjTeqQ4cO1dYPHDhQt912m9LT0zV37lwlJCSoS5cuuuGGG5Senq558+aptLRU//73v+u0/oEDB2ratGnq37+/0tPTddddd6lPnz4RYZUkjR07Vrfeeqv69OmjPn36RHzP5XIpKSlJktS1a1d1795dHo9HiYmJuuqqq7R8+fJw7ZNPPqkTTzxRY8aMiWIrRY/gywLNnRoDAAAAAIC6KyotCodeFYImqOJdxU22zoEDB+rcc8/VgAEDdPnll+uRRx7R7t27a6w/7bTTwv92uVxKTk7WgAEDwsu6desmqXxkVV3s27dPs2fPVt++fdWpUyd16NBB69evrzLia+jQodG8rbAbbrhBr7/+ur755htJ5XeVnDx5shwOR71er64IvpqZFakxAAAAAACou/TkdDkdkZGJy+GSL8nXZOt0uVxauXKlXnnlFfXr10+LFy/WySefrJKSkmrr27ZtG/G1w+GIWFYRKIVCkQFeTWbPnq0VK1bonnvu0T//+U+tW7dOAwYM0KFDhyLq2rdvH83bCjv99NM1cOBAPf7441q7dq0+/fRTTZ48uV6vFQ2Cr2ZmRWoMAAAAAADqzuv2KjczVy6HS1J56LUsc5m8bm+TrtfhcGjkyJFasGCBPv74Y8XFxWnFihVNus4K7777riZPnqyf/OQnGjBggLp3766NGzdG/TpxcXGSpGAwWOV7119/vR599FEtX75c48aNU0pKSkPbPi6Cr2ZmRWoMAAAAAACikz04WxtnblRBVoE2ztyo7MHZTbq+Dz/8UPfcc48++ugjbdq0Sc8//7x27Nihvn37Nul6K6Snp+v555/XunXr9K9//UtXXXVVnUeLHSs1NVUOh0P5+fnasWOH9u3bF/7eVVddJb/fr0ceeaTJJ7WvQPDVzKxKjQEAAAAAQHS8bq/G9B7TLOfsbrdbb7/9ti688EL94Ac/0G233ab7779fF1xwQZOvW5IeeOABde7cWWeeeaYuuugiZWRkaPDgwVG/Tq9evbRgwQLNmTNH3bp100033RT+nsfj0aWXXqoOHTpo/Pjxjdh9zRympvtitiCBQEAej0dlZWVyu91Wt9Mo/AG/incVy5fkI/QCAAAAAKCRfP/99yopKVFaWpoSEhKsbgeVnHvuuTr11FP1+9//vta62n6O0eREbRrcMerF6/YSeAEAAAAAgFZh9+7deuutt/TWW2/pD3/4Q7Otl+ALAAAAAAAATer000/X7t27de+99+rkk09utvUSfAEAAAAAAKBJ1ecOkY2Bye0BAAAAAABgSwRfAAAAAAAAsCWCLwAAAAAAYDuhUMjqFtAAxphGeR3m+AIAAAAAALYRFxcnp9OpLVu26IQTTlBcXJwcDofVbSEKxhjt2LFDDodDbdu2bdBrEXwBAAAAAADbcDqdSktL07fffqstW7ZY3Q7qyeFwyOv1yuVyNeh1CL4AAAAAAICtxMXF6cQTT9SRI0cUDAatbgf10LZt2waHXhLBFwAAAAAAsKGKy+QaeqkcYhuT2wMAAAAAAMCWCL4AAAAAAABgSwRfAAAAAAAAsCWCLwAAAAAAANgSwRcAAAAAAABsieALAAAAAAAAtkTwBQAAAAAAAFsi+AIAAAAAAIAtEXwBAAAAAADAlgi+AAAAAAAAYEsEXwAAAAAAALAlgi8AAAAAAADYEsEXAAAAAAAAbIngCwAAAAAAALZE8AUAAAAAAABbIvgCAAAAAACALRF8AQAAAAAAwJYIvgAAAAAAAGBLBF8AAAAAAACwJYIvAAAAAAAA2BLBFwAAAAAAAGyJ4AsAAAAAAAC2RPAFAAAAAAAAWyL4AgAAAAAAgC0RfAEAAAAAAMCWCL4AAAAAAABgSwRfAAAAAAAAsCWCLwAAAAAAANgSwRcAAAAAAABsieALAAAAAAAAtkTwBQAAAAAAAFsi+AIAAAAAAIAtEXwBAAAAAADAlgi+AAAAAAAAYEsEXwAAAAAAALAlgi8AAAAAAADYUr2Cr4ceeki9e/dWQkKChg8frtWrV9dav2fPHk2fPl09evRQfHy8fvCDH+jll1+uV8MAAAAAAABAXbSJ9gnPPPOMZs2apaVLl2r48OFatGiRMjIytGHDBnXt2rVK/aFDh3Teeeepa9eueu6559SrVy99/fXX6tSpU2P0DwAAAAAAAFTLYYwx0Txh+PDhGjZsmJYsWSJJCoVCSklJ0YwZMzRnzpwq9UuXLtV9992nzz//XG3btq1Xk4FAQB6PR2VlZXK73fV6DQAAAAAAAMS+aHKiqC51PHTokNauXatx48YdfQGnU+PGjdP7779f7XP+/ve/a8SIEZo+fbq6deum/v3765577lEwGKxxPQcPHlQgEIh4AAAAAAAAANGIKvjauXOngsGgunXrFrG8W7du2rp1a7XP+eqrr/Tcc88pGAzq5Zdf1u233677779fv/nNb2pcT05OjjweT/iRkpISTZsxwR/wq6CkQP6A3+pWAAAAAAAAbKnJ7+oYCoXUtWtX5ebmasiQIbriiiv061//WkuXLq3xOXPnzlVZWVn4sXnz5qZus1nlFeYpdVGqxj4+VqmLUpVXmGd1SwAAAAAAALYT1eT2Xbp0kcvl0rZt2yKWb9u2Td27d6/2OT169FDbtm3lcrnCy/r27autW7fq0KFDiouLq/Kc+Ph4xcfHR9NazPAH/JqaP1UhE5IkhUxI0/KnKcOXIa/ba3F3AAAAAAAA9hHViK+4uDgNGTJEq1atCi8LhUJatWqVRowYUe1zRo4cqeLiYoVCofCyL774Qj169Kg29LK7otKicOhVIWiCKt5VbFFHAAAAAAAA9hT1pY6zZs3SI488oscee0zr16/Xz372M+3fv19TpkyRJE2aNElz584N1//sZz/Trl27dMstt+iLL77QSy+9pHvuuUfTp09vvHcRQ9KT0+V0RG52l8MlX5LPoo4AAAAAAADsKapLHSXpiiuu0I4dOzRv3jxt3bpVgwYN0quvvhqe8H7Tpk1yOo8GOykpKXrttdf085//XKeddpp69eqlW265Rb/85S8b713EEK/bq9zMXE3Ln6agCcrlcGlZ5jIucwQAAAAAAGhkDmOMsbqJ4wkEAvJ4PCorK5Pb7ba6nUbhD/hVvKtYviQfoRcAAAAAAEAdRZMTRT3iC43D6/YSeAEAAAAAADShqOf4AgAAAAAAAGIBwRcAAAAAAABsieALAAAAAAAAtkTwBQAAAAAAJJXfiK2gpED+gN/qVoBGweT2AAAAAABAeYV5mpo/VSETktPhVG5mrrIHZ1vdFtAgjPgCAAAAAKCV8wf84dBLkkImpGn50xj5hZhH8AUAaFUYvg8AAFBVUWlROPSqEDRBFe8qtqgjoHEQfAEAWo28wjylLkrV2MfHKnVRqvIK86xuCQAAoEVIT06X0xEZEbgcLvmSfBZ1BDQOgi8AQKvA8H0AAICaed1e5WbmyuVwSSoPvZZlLpPX7bW4M6BhmNweANAq1DZ8nz/oAAAApOzB2crwZah4V7F8ST7+RoItEHwBAFqFiuH7x4ZfDN8HAACI5HV7CbxgK1zqCABoFRi+DwAAALQ+DmOMsbqJ4wkEAvJ4PCorK5Pb7ba6HQBADPMH/AzfBwAAAGJYNDkRlzoCAFoVhu8DAAAArQeXOgIAAAAAAMCWCL4AAAAAAABgSwRfAAAAAAAAsCWCLwAAAAAAANgSwRcAAAAAAABsieALAAAAAAAAtkTwBQAAAAAAAFsi+AIAAAAAAIAtEXwBAAAAAADAlgi+AAAAAAAAYEsEXwAAAAAAALAlgi8AAAAAAADYEsEXAAAAAAAAbIngCwAAAAAAALZE8AUAAAAAAABbIvgCAAAAAACALRF8AQAAAAAAwJYIvgAAAAAAAGBLBF8AAAAAAACwJYIvAAAAAAAA2BLBFwAAAAAAAGyJ4AsAAAAAAAC2RPAFAAAAAAAAWyL4AgAAAAAAgC0RfAEAAAAAAMCWCL4AAAAAAABgSwRfAAAAAAAAsCWCLwAAAAAAANgSwRcAAAAAAJAk+QN+FZQUyB/wW90K0CjaWN0AAAAAAACwXl5hnqbmT1XIhOR0OJWbmavswdlWtwU0CCO+AAAAAABo5fwBfzj0kqSQCWla/jRGfiHmEXwBAAAAANDKFZUWhUOvCkETVPGuYos6AhoHwRcAAAAAAK1cenK6nI7IiMDlcMmX5LOoI6BxEHwBAAAAANDKed1e5WbmyuVwSSoPvZZlLpPX7bW4M6BhHMYYY3UTxxMIBOTxeFRWVia32211OwAAAAAA2JI/4FfxrmL5knyEXmixosmJuKsjAAAAAACQVD7yi8ALdsKljgAAAAAAALAlgi8AAAAAAADYEsEXAAAAAAAAbIngCwAAAAAAALZE8AUAAAAAAABbIvgCAAAAAACALRF8AQAAAAAAwJYIvgAAAAAAAGBLBF8AAAAAAACwJYIvAAAAAAAA2FIbqxuIxv79kstVdbnLJSUkRNbVxOmUEhPrV3vggGRM9bUOh9SuXf1qv/tOCoVq7qN9+/rVfv+9FAw2Tm27duV9S9LBg9KRI41Tm5hYvp0l6dAh6fDhxqlNSDj6WYmm9vDh8vqaxMdLbdpEX3vkSPm2qElcnNS2bfS1wWD5z64mbduW10dbGwqVf9Yao7ZNm/JtIZXvEwcONE5tNPs9x4jqazlGRF/LMaL83xwj6lfLMaL83xwjoq/lGFH+b44R9avlGFH+b44R0ddyjDj6NceI6Gub+hhR27arwsSAsrIyI8lIZab8xxf5uPDCyPp27arWVDxGj46s7dKl5tqhQyNrU1Nrru3XL7K2X7+aa1NTI2uHDq25tkuXyNrRo2uubdcusvbCC2uurfyTv+yy2mv37Ttam5VVe+327Udrb7yx9tqSkqO1s2fXXvvJJ0dr58+vvXb16qO1CxfWXltQcLR2yZLaa/Pzj9YuX1577bPPHq199tnaa5cvP1qbn1977ZIlR2sLCmqvXbjwaO3q1bXXzp9/tPaTT2qvnT37aG1JSe21N954tHb79tprs7KO1u7bV3vtZZeZCLXVcowof3CMOPrgGFH+4BhR/uAYUf7gGHH0wTGi/MExovzBMaL8wTHi6MPux4jNZZvNm1+9aZ7N315rLceI8gfHiPJH8x8jynOisrIyczwxNeILAIDG8NE3H6nHyd3ldXutbgUAAKDFeG/ze7p50SiFTEiOjedIetPqloAGcxhjjNVNHE8gEJDH49GWLWVyu91Vvs/QwuprGX4cfS3Dj8v/zfDj+tVyjCj/d0s+Rjy27jHd9MpNMq4Dcrqk3MxcXds/m2NElLUcI+pXyzGi/N8t+RhRgb8jynGMiL6WY0T9ajlGlLP6GPFN4BudsvQkGed/Vxxyyhlsr/XT16uXu1eVeo4R0ddyjKhfbXX7fSAQUM+eHpWVVZ8THSumgq+6vCEAAKrjD/iVuihVIXP0t7XL4dLGmRsZ+QUAAFq9gpICjX18bNXlWQUa03tM8zcE1CKanIi7OgIAWoWi0qKI0EuSgiao4l3FFnUEAADQcqQnp8vpiIwIXA6XfEk+izoCGgfBFwCgVeCPOQAAgJp53V7lZubK5Si/NtPlcGlZ5jJGxiPmMbk9AKBVqPhjblr+NAVNkD/mAAAAKskenK0MX4aKdxXLl+Tj7yTYAnN8AQBaFX/Azx9zAAAAQAyLJidixBcAoFXxur0EXgAAAEArwRxfAAAAAAAAsCWCLwAAAAAAANgSwRcAAAAAAABsqV7B10MPPaTevXsrISFBw4cP1+rVq2usffTRR+VwOCIeCQkJ9W4YAAAAAAAAqIuog69nnnlGs2bN0vz581VYWKiBAwcqIyND27dvr/E5brdb3377bfjx9ddfN6hpAAAAAAAA4HiiDr4eeOAB3XDDDZoyZYr69eunpUuXql27dvrTn/5U43McDoe6d+8efnTr1q1BTQMAAAAAAADHE1XwdejQIa1du1bjxo07+gJOp8aNG6f333+/xuft27dPqampSklJ0cUXX6xPP/20/h0DAAAAAAAAdRBV8LVz504Fg8EqI7a6deumrVu3Vvuck08+WX/605/0t7/9TU8++aRCoZDOPPNM+f3+Gtdz8OBBBQKBiAcAAAAAAAAQjSa/q+OIESM0adIkDRo0SKNHj9bzzz+vE044QcuWLavxOTk5OfJ4POFHSkpKU7cJAAAAAAAAm4kq+OrSpYtcLpe2bdsWsXzbtm3q3r17nV6jbdu2Ov3001VcXFxjzdy5c1VWVhZ+bN68OZo2AQAAAAAAgOiCr7i4OA0ZMkSrVq0KLwuFQlq1apVGjBhRp9cIBoP6z3/+ox49etRYEx8fL7fbHfEAAAAAAAAAotEm2ifMmjVLWVlZGjp0qM444wwtWrRI+/fv15QpUyRJkyZNUq9evZSTkyNJuvPOO/XDH/5QPp9Pe/bs0X333aevv/5a119/feO+EwAAAAAAAOAYUQdfV1xxhXbs2KF58+Zp69atGjRokF599dXwhPebNm2S03l0INnu3bt1ww03aOvWrercubOGDBmi9957T/369Wu8dwEAAAAAAABU4jDGGKubOJ5AICCPx6OysjIuewQAAAAAAGjFosmJmvyujgAAAAAAAIAVCL4AAAAAAABgSwRfAAAAAAAAsCWCLwAAAAAAANgSwRcAoFXxB/wqKCmQP+C3uhUAAAAATayN1Q0AANBc8grzNDV/qkImJKfDqdzMXGUPzra6LQAAAABNhBFfAIBWwR/wh0MvSQqZkKblT2PkFwA0E0bcArGBfRV2Q/AFAGgVikqLwqFXhaAJqnhXsUUdAUDrkVeYp9RFqRr7+FilLkpVXmGe1S0BqAb7KuyI4AsA0CqkJ6fL6Yj8tedyuORL8lnUEQC0Doy4BWID+yrsiuALANAqeN1e5WbmyuVwSSoPvZZlLpPX7bW4MwCwN0bcArGBfRV2xeT2AIBWI3twtjJ8GSreVSxfko/QCwCaQcWI22NPqBlxC7Q87KuwK0Z8AQBaFa/bqzG9xxB6AUAzYcQtEBvYV2FXDmOMsbqJ4wkEAvJ4PCorK5Pb7ba6HQAAAABR8gf8jLgFYgD7KmJBNDkRlzoCAAAAaHJet5eTaCAGsK/CbrjUEQAAAAAAALZE8AUAAAAAAABbIvgCAAAAAACALRF8AQAAAGhy/oBfBSUF8gf8VrcCAGhFmNweAAAAQJPKK8zT1PypCpmQnA6ncjNzlT042+q2AACtACO+AAAAADQZf8AfDr0kKWRCmpY/jZFfAIBmQfAFAAAAoMkUlRaFQ68KQRNU8a5iizoCALQmBF8AAAAAmkx6crqcjsjTDpfDJV+Sz6KOAACtCcEXAAAAgCbjdXuVm5krl8MlqTz0Wpa5TF631+LOAACtgcMYY6xu4ngCgYA8Ho/KysrkdrutbgcAAABAlPwBv4p3FcuX5CP0AgA0SDQ5EXd1BAC0Kv6AX0WlRUpPTufECwCakdft5bgLAGh2BF8AgFYjrzAvfGcxp8Op3MxcZQ/OtrotAAAAAE2EOb4AAK2CP+APh16SFDIhTcufJn/Ab3FnAAAAAJoKwRcAoFUoKi0Kh14Vgiao4l3FFnUEAAAAoKkRfAEAWoX05HQ5HZG/9lwOl3xJPos6AgAAaHn8Ab8KSgoYFQ/bIPgCALQKXrdXuZm5cjlckspDr2WZy5hoGQAA4L/yCvOUuihVYx8fq9RFqcorzLO6JaDBHMYYY3UTxxPNbSoBAKiNP+BX8a5i+ZJ8hF4AAAD/5Q/4lbooNWJqCJfDpY0zN/I3E1qcaHIi7uoIAGhVvG4vf7wBAABUUtt8qPzthFjGpY4AAAAAALRyzIcKuyL4AgAAAACglWM+VNgVc3wBAAAAAABJzIeK2MAcXwAAAAAAIGrMhwq74VJHAAAAAAAA2BLBFwAAAFocf8CvgpIC+QN+q1sBAAAxjEsdAQAA0KLkFeZpav5UhUxITodTuZm5yh6cbXVbAAAgBjHiCwAAAC2GP+APh16SFDIhTcufxsgvAABQLwRfAAAAaDGKSovCoVeFoAmqeFexRR0BAIBYRvAFAACAFiM9OV1OR+SfqC6HS74kn0UdAQCAWEbwBQAAgBbD6/YqNzNXLodLUnnotSxzmbxur8WdAQCAWOQwxhirmzieQCAgj8ejsrIyud1uq9sBAABAE/MH/CreVSxfko/QCwAARIgmJ+KujgAAAGhxvG4vgRcAAGgwLnUEAAAAAACALRF8AQBaFX/Ar4KSAvkDfqtbAQAAANDEuNQRANBq5BXmaWr+VIVMSE6HU7mZucoenG11WwAAAACaCCO+AACtgj/gD4dekhQyIU3Ln8bILwBoJoy4BQBYgeALANAqFJUWhUOvCkETVPGuYos6AoDWI68wT6mLUjX28bFKXZSqvMI8q1sCALQSBF8AgFYhPTldTkfkrz2XwyVfks+ijgCgdWDELQDASgRfAIBWwev2KjczVy6HS1J56LUsc5m8bq/FnQGAvTHiFgBgJSa3BwC0GtmDs5Xhy1DxrmL5knyEXgDQDCpG3B4bfjHiFgDQXBjxBQBoVbxur8b0HkPoBQDNhBG3AAArOYwxxuomjicQCMjj8aisrExut9vqdgAAAABEyR/wM+IWANAoosmJuNQRAAAAQJPzur0EXgCAZseljgAAAAAAALAlgi8AAAAATc4f8KugpED+gN/qVgAArQiXOgIAAABoUnmFeZqaP1UhE5LT4VRuZq6yB2db3RYAoBVgxBcAAIhpjCIBWjZ/wB8OvSQpZEKalj+NfRYA0CwIvgAAQMzKK8xT6qJUjX18rFIXpSqvMM/qltBICDTto6i0KBx6VQiaoIp3FVvUEQCgNSH4AgAAMYlRJPZFoGkv6cnpcjoiTztcDpd8ST6LOgIAtCYEXwAAICYxisSeCDTtx+v2KjczVy6HS1J56LUsc5m8bq/FnQEAWgMmtwcAADGpYhTJseEXo0hiX22BJkFJ7MoenK0MX4aKdxXLl+TjZwkAaDaM+AIAADGJUST2xGVx9maMsboFAEArw4gvAAAQsxhFYj8Vgea0/GkKmiCBpk3kFeaFL2F1OpzKzcxV9uBsq9sCALQCDhMD/9slEAjI4/GorKxMbrfb6nYAAADQxPwBP4GmTfgDfqUuSq1yWfLGmRv52QIA6iWanIgRXwAAIKb5A34VlRYpPTmdk2gb8bq9/DxtgnnbAABWYo4vAAAQs/IK85S6KFVjHx+r1EWpyivMs7olAJUwbxsAwEoEXwAAICb5A/7wnEGSFDIhTcufJn/Ab3FnAI7FjSgAAFbiUkcAABCTuHwKiB3ciAIAYBWCLwAAEJMqLp+qPGE2l08BLRPztgEArMCljgAAICZx+RQAAACOx2GMMVY3cTzR3KYSAAC0Lv6An8unAAAAWpFociIudQQAADGNy6cAAABQk3pd6vjQQw+pd+/eSkhI0PDhw7V69eo6Pe/Pf/6zHA6Hxo8fX5/VAgAAAAAAAHUWdfD1zDPPaNasWZo/f74KCws1cOBAZWRkaPv27bU+b+PGjZo9e7ZGjRpV72YBAAAAAACAuoo6+HrggQd0ww03aMqUKerXr5+WLl2qdu3a6U9/+lONzwkGg7r66qu1YMECnXTSSQ1qGAAAAAAAAKiLqIKvQ4cOae3atRo3btzRF3A6NW7cOL3//vs1Pu/OO+9U165dlZ2dXf9OAQAAAAAAgChENbn9zp07FQwG1a1bt4jl3bp10+eff17tc9555x3l5eVp3bp1dV7PwYMHdfDgwfDXgUAgmjYBAAAAAACA+k1uX1d79+7Vtddeq0ceeURdunSp8/NycnLk8XjCj5SUlCbsEgAAAAAAAHYU1YivLl26yOVyadu2bRHLt23bpu7du1ep//LLL7Vx40ZddNFF4WWhUKh8xW3aaMOGDerTp0+V582dO1ezZs0Kfx0IBAi/AAAAAAAAEJWogq+4uDgNGTJEq1at0vjx4yWVB1mrVq3STTfdVKX+lFNO0X/+85+IZbfddpv27t2rBx98sMYwKz4+XvHx8dG0BgAAAAAAAESIKviSpFmzZikrK0tDhw7VGWecoUWLFmn//v2aMmWKJGnSpEnq1auXcnJylJCQoP79+0c8v1OnTpJUZTkAAAAAAADQmKIOvq644grt2LFD8+bN09atWzVo0CC9+uqr4QnvN23aJKezSacOAwAAAAAAAI7LYYwxVjdxPIFAQB6PR2VlZXK73Va3AwAAAAAAAItEkxMxNAsAAAAAAAC2RPAFAAAAAAAAWyL4AgAAAAAAgC0RfAEAAAAAAMCWCL4AAEBM8wf8KigpkD/gt7oVAAAAtDBtrG4AAACgvvIK8zQ1f6pCJiSnw6nczFxlD862ui0AAAC0EIz4AgAAMckf8IdDL0kKmZCm5U9j5BcAAADCCL4AAEBMKiotCodeFYImqOJdxRZ1BAAAgJaG4AsAAMSk9OR0OeSIWOaQQ74kn0UdAQAAoKUh+AIAALbhcDiOXwQAAIBWg+ALAADEpKLSIhmZiGUhE+JSRwAAAIQRfAEAgJiUnpwupyPyTxmXw8WljgAAAAgj+AIAADHJ6/YqNzNXLodLUnnotSxzmbxur8WdAQAAoKVwGGPM8cusFQgE5PF4VFZWJrfbbXU7AACgBfEH/CreVSxfko/QCwAAoBWIJidq00w9AQAANAmv20vgZUP+gF9FpUVKT07n5wsAAOqN4AsAAAAtSl5hnqbmT1XIhOR0OJWbmavswdlWtwUAAGIQc3wBAACgxfAH/OHQSyq/U+e0/GnyB/wWdwYAAGIRwRcAAABajKLSonDoVSFogireVWxRRwAAIJYRfAEAAKDFSE9Ol9MR+Seqy+GSL8lnUUcAACCWEXwBAACgxfC6vcrNzJXL4ZJUHnoty1zGBPcAAKBemNweAAAALUr24Gyd1u00vbPpHZ114lka1muY1S0BAIAYRfAFAACAFoW7OgIAgMbCpY4AAABoMbirIwAAaEwEXwAAAGgxuKsjAABoTARfAAAAaDG4qyMAAGhMBF8AAABoMSru6uj875+pTjm5qyMAAKg3gi8AAAC0PI5K/wUAAKgHgi8AAAC0GExuDwAAGhPBFwAAAFoMJrcHAACNieALAAAALQaT2wMAgMZE8AUAAIAWo2Jye5fDJak89GJyewAAUF8OY4yxuonjCQQC8ng8Kisrk9vttrodAAAANDF/wK/iXcXyJfkIvQAAQIRocqI2zdQTAAAAUGdet5fACwAANBiXOgIAAAAAAMCWCL4AAAAAAABgSwRfAAAgpvkDfhWUFMgf8FvdCgAAAFoY5vgCAAAxK68wT1PzpypkQnI6nMrNzFX24Gyr2wIAAEALwYgvAAAQk/wBfzj0kqSQCWla/jRGfgEAACCM4AsAAMSkotKicOhVIWiCKt5VbFFHAAAAaGkIvgAAQExKT06X0xH5p4zL4ZIvyWdRRwAAAGhpCL4AAEBM8rq9ys3MlcvhklQeei3LXCav22txZwAAAGgpHMYYY3UTxxMIBOTxeFRWVia32211OwAAoAXxB/wq3lUsX5KP0AsAAKAViCYn4q6OFlnzzRr9c9M/NerEURrWa5jV7QAAELO8bi+BFwAAAKpF8GWByS9M1mP/eiz8ddbALD06/lHrGgIAAAAAALAh5vhqZmu+WRMReknSY/96TGu+WWNRRwAAAAAAAPZE8NXM/rnpn9Uuf3fzu83cCQAAAAAAgL0RfDWzUSeOqnb5yJSRzdwJAAAAAACAvRF8NbNhvYYpa2BWxLKsgVlMcA8AAAAAANDICL4sMOrEUXI6yje90+GscRQYAAAAAAAA6o/gq5n5A35NzZ+qkAlJkkImpGn50+QP+C3uDAAAAAAAwF4IvppZUWlROPSqEDRBFe8qtqgjAAAAAAAAeyL4ambpyenhyxwruBwu+ZJ8FnUEAAAAAABgTwRfzczr9io3M1cuh0tSeei1LHOZvG6vxZ0BAAAAAADYi8MYY6xu4ngCgYA8Ho/KysrkdrutbqdR+AN+Fe8qli/JR+gFAAAAAABQR9HkRG2aqSdU4nV7CbwAAAAAAACaEJc6AgAAAADqxR/wq6CkgLvUA2ixGPEFAAAAAIhaXmGepuZPVciE5HQ4lZuZq+zB2Va3BQARGPEFAAAAAIiKP+APh16SFDIhTcufxsgvAC0OwRcAAAAAICpFpUXh0KtC0ARVvKvYoo4AoHoEXwAAAACAqKQnp8vpiDyddDlc8iX5LOoIAKpH8AUAAAAAiIrX7VVuZq6c/z2ldMqpZZnLuHM9gBaH4AsAAAAAUD+OSv8FgBaG4AsAAAAAEBUmtwcQKwi+AAAAAABRYXJ7ALGC4AsAAAAAEBUmtwcQKwi+AAAAAABRqZjc3uVwSSoPvZjcHkBL1MbqBgAAAAAAsSd7cLZO63aa3tn0js468SwN6zXM6pYAoAqCLwAAAABA1PIK88IT3DsdTuVm5ip7cLbVbQFABC51BAAAAABEhbs6AogVBF8AAAAAgKhwV0cAsYLgCwAAAAAQFe7qCCBWEHwBAAAAAKLCXR0BxAqHMcZY3cTxBAIBeTwelZWVye12W90OAAAAAEDlc30V7yqWL8lH6AWg2USTE3FXRwAAAABAvXjdXgIvAC0alzoCAAAAAADAluoVfD300EPq3bu3EhISNHz4cK1evbrG2ueff15Dhw5Vp06d1L59ew0aNEhPPPFEvRsGAAAAAAAA6iLq4OuZZ57RrFmzNH/+fBUWFmrgwIHKyMjQ9u3bq61PSkrSr3/9a73//vv697//rSlTpmjKlCl67bXXGtw8AAAAAAAAUJOoJ7cfPny4hg0bpiVLlkiSQqGQUlJSNGPGDM2ZM6dOrzF48GD9+Mc/1l133VWneia3BwAAAAAAgBRdThTViK9Dhw5p7dq1Gjdu3NEXcDo1btw4vf/++8d9vjFGq1at0oYNG3T22WdHs2oAAAAAAAAgKlHd1XHnzp0KBoPq1q1bxPJu3brp888/r/F5ZWVl6tWrlw4ePCiXy6U//OEPOu+882qsP3jwoA4ePBj+OhAIRNMmAAAAAAAAEF3wVV8dO3bUunXrtG/fPq1atUqzZs3SSSedpDFjxlRbn5OTowULFjRHawAAAAAAALCpqIKvLl26yOVyadu2bRHLt23bpu7du9f4PKfTKZ/PJ0kaNGiQ1q9fr5ycnBqDr7lz52rWrFnhrwOBgFJSUqJpFQAAAAAAAK1cVHN8xcXFaciQIVq1alV4WSgU0qpVqzRixIg6v04oFIq4lLGy+Ph4ud3uiAcAAAAAAAAQjagvdZw1a5aysrI0dOhQnXHGGVq0aJH279+vKVOmSJImTZqkXr16KScnR1L5ZYtDhw5Vnz59dPDgQb388st64okn9PDDDzfuOwEAAAAAAACOEXXwdcUVV2jHjh2aN2+etm7dqkGDBunVV18NT3i/adMmOZ1HB5Lt379fN954o/x+vxITE3XKKafoySef1BVXXNF47wIAAAAAAACoxGGMMVY3cTyBQEAej0dlZWVc9ggAAAAAANCKRZMTRTXHFwC0Jv6AXwUlBfIH/Fa3AgAAAAD10trPa6K+1BEAWoO8wjxNzZ+qkAnJ6XAqNzNX2YOzrW4LAAAAAOqM8xoudQSAKvwBv1IXpSpkQuFlLodLG2dulNfttbAzAAAAAKgbO5/XcKkjADRAUWlRxC8HSQqaoIp3FVvUEQAAAABEh/OacgRfAFBJenK6nI7Iw6PL4ZIvyWdRRwAAAAAQHc5ryhF8AUAlXrdXuZm5cjlcksp/OSzLXBbzw4EBAAAAtB6c15Rjji8AqIE/4FfxrmL5knyt7pcDAAAAAHuw43lNNDkRd3UEgBp43V7b/GIAAABoCv6AX0WlRUpPTufvJqCFau3nNQRfAAAAAICo5RXmaWr+VIVMSE6HU7mZucoenG11WwAQgTm+AAAAAABR8Qf84dBLkkImpGn50+QP+C3uDAAiEXwBAAAAAKJSVFoUDr0qBE1QxbuKLeoIAKpH8AUAAAAAiEp6crqcjsjTSZfDJV+Sz6KOAKB6BF8AAAAAgKh43V7lZubK5XBJKg+9lmUua9UTaANomRzGGGN1E8cTzW0qAQAAAADNwx/wq3hXsXxJPkIvAM0mmpyIEV8AAAAAgHqLgbEUAFqxNlY3AAAAAACIPXmFeeE7OzodTuVm5ip7cLbVbQFABEZ8AQAAAACi4g/4w6GXJIVMSNPyp8kf8FvcGQBEIvgCgBr4A34VlBTwBxwAAEAlRaVF4dCrQtAEVbyr2KKOANSktZ/XcKkjAFSDofsAAAA1S09Ol9PhjAi/XA6XfEk+C7sCUBnnNYz4AoAqGLoPAABQO6/bq9zMXLkcLknlodeyzGXc2RFoQTivKceILwCopLah+/wxBwAAUC57cLYyfBkq3lUsX5KPv5OAFobzmnIEXwBQCUP3AQAA6sbr9raqE2gglnBeU45LHQGgEobuAwAAAIh1nNeUcxhjjNVNHE8gEJDH41FZWZncbrfV7QBoJfwBP0P3AQAAAMQ0O57XRJMTcakjANSAofsAAAAAYl1rP6/hUkcAAAAAAADYEsEXAAAAAAAAbIngCwAAAAAAALZE8AUAAAAAAABbIvgCAAAAAACALRF8AQAAAAAAwJYIvgAAAAAAAGBLBF8AAAAAAACwJYIvAAAAAAAA2BLBFwAAAAAAAGyJ4AsAAAAAAAC2RPAFAAAAAAAAWyL4AgAAAAAAgC0RfAEAAAAAAMCWCL4AAAAAAABgSwRfAFADf8CvgpIC+QN+q1sBAAAAgHpp7ec1baxuAABaorzCPE3Nn6qQCcnpcCo3M1fZg7OtbgsAAAAA6ozzGslhjDFWN3E8gUBAHo9HZWVlcrvdVrcDwOb8Ab9SF6UqZELhZS6HSxtnbpTX7bWwMwAAAACoGzuf10STE3GpIwBUUlRaFPHLQZKCJqjiXcUWdQQAAAAA0eG8phzBFwBUkp6cLqcj8vDocrjkS/JZ1BEAAAAARIfzmnIEXwBQidftVW5mrlwOl6TyXw7LMpfF/HBgAAAAAK0H5zXlmOMLAGrgD/hVvKtYviRfq/vlAAAAAMAe7HheE01OxF0dAaAGXrfXNr8YAAAAALROrf28hksdAQAAAAAAYEsEXwAAAAAAALAlgi8AAAAAAADYEsEXAAAAAAAAbIngCwAAAAAAALZE8AUAAAAAAABbIvgCAAAAAACALRF8AQAAAAAAwJYIvgAAAAAAAGBLBF8AAAAAAACwJYIvAAAAAAAA2BLBFwAAAAAAAGyJ4AsAAAAAAAC2RPAFAAAAAAAAWyL4AgAAAAAAgC0RfAEAAAAAAMCWCL4AAAAAAABgSwRfAFADf8CvgpIC+QN+q1sBAAAAgHpp7ec1baxuAABaorzCPN3w4g0yMnLIoUcuekTZg7OtbgsAAAAA6ozzGslhjDFWN3E8gUBAHo9HZWVlcrvdVrcDwOb8Ab9O/N8TZXT08OiQQ5t+vklet9fCzgAAAACgbux8XhNNThRTI77275dcrqrLXS4pISGyriZOp5SYWL/aAwekmmJCh0Nq165+td99J4VCNffRvn39ar//XgoGG6e2XbvyviXp4EHpyJHGqU1MLN/OknTokHT4cOPUJiQc/axEU3v4cHl9TeLjpTZtoq89cqR8W9QkLk5q2zb62mCw/GdXk7Zty+ujrQ2Fyj9rjVHbpk35tpDK94kDBxqnNpr9PtpjxHub3jv6y+FQ+c5qJBVsWK1L+nkjajlGlOMYUY5jRPS1sXiM4O+I6Gs5RpTjGBF9LceIchwj6lfLMaIcx4joa+1yjHjz8w9lDiVG1BoZvb/5fV1+6uWSYvcYUdu2q8LEgLKyMiPJSGWm/McX+bjwwsj6du2q1lQ8Ro+OrO3SpebaoUMja1NTa67t1y+ytl+/mmtTUyNrhw6tubZLl8ja0aNrrm3XLrL2wgtrrq38k7/sstpr9+07WpuVVXvt9u1Ha2+8sfbakpKjtbNn1177ySdHa+fPr7129eqjtQsX1l5bUHC0dsmS2mvz84/WLl9ee+2zzx6tffbZ2muXLz9am59fe+2SJUdrCwpqr1248Gjt6tW1186ff7T2k09qr509+2htSUnttTfeeLR2+/baa7Oyjtbu21d77WWXmQi11UZ7jHjmk2eM7lD5o932Gms5Rhx9cIwof3CMKH/Y/RhxLP6OKMcxohzHiHIcI47iGFGOY0Q5jhHlOEYcZcUxQp4S8+wnRz9AsXuMKM+JysrKzPEwuT0AVHJmyplyyGF1GwAAAADQuBzSiJQRVnfRrGJqjq8tW6q/drMlDy2sS22sDi1sjFo7DD/+JvCNTnnoFBlz9AfjdLj05azP1Dup/LI4hh+X/9uY2Bl+nFeYp2n50xQ8GC+nw6XFFyxW1qCsamsrcIwo/zfHiOhrOUaU/zuWjhH1qeUYUf5vjhHR13KMKP83x4j61XKMKP83x4joazlGHP06lo8Rj617TDNemaGQCf73vOb3unHk5HBtrB4jAoGAevas2xxfMRV8Mbk9WqKCkgKNfXxs1eVZBRrTe0zzN4RG4w/4VbyrWL4kX8xP/ggAAACgdbLjeY1tJ7cHWqL05HQ5HU6Fjhnx5XK45EvyWdgVGoPX7bXNLwYAAAAArVNrP69hji+ggbxur3Izc+VylI9hdjlcWpa5rFUfWAAAAAAAaAnqFXw99NBD6t27txISEjR8+HCtXr26xtpHHnlEo0aNUufOndW5c2eNGzeu1nogFmUPztbGmRtVkFWgjTM3KntwttUtAQAAAADQ6kUdfD3zzDOaNWuW5s+fr8LCQg0cOFAZGRnavn17tfVvvfWWJk6cqIKCAr3//vtKSUnR+eefr2+++abBzQMtidft1ZjeYxjpBQAAAABACxH15PbDhw/XsGHDtGTJEklSKBRSSkqKZsyYoTlz5hz3+cFgUJ07d9aSJUs0adKkOq2Tye0BAAAAAAAgRZcTRTXi69ChQ1q7dq3GjRt39AWcTo0bN07vv/9+nV7jwIEDOnz4sJKSkqJZNQAAAAAAABCVqO7quHPnTgWDQXXr1i1iebdu3fT555/X6TV++ctfqmfPnhHhWWUHDx7UwYMHw18HAoFo2gQAAAAAAACa966Ov/3tb/XnP/9ZK1asUEJCQo11OTk58ng84UdKSkozdgkAAAAAAAA7iCr46tKli1wul7Zt2xaxfNu2berevXutz/3d736n3/72t3r99dd12mmn1Vo7d+5clZWVhR+bN2+Opk0AAAAAAAAguuArLi5OQ4YM0apVq8LLQqGQVq1apREjRtT4vIULF+quu+7Sq6++qqFDhx53PfHx8XK73REPAAAAAAAAIBpRzfElSbNmzVJWVpaGDh2qM844Q4sWLdL+/fs1ZcoUSdKkSZPUq1cv5eTkSJLuvfdezZs3T08//bR69+6trVu3SpI6dOigDh06NOJbAQAAAAAAAI6KOvi64oortGPHDs2bN09bt27VoEGD9Oqrr4YnvN+0aZOczqMDyR5++GEdOnRIl112WcTrzJ8/X3fccUfDugdaEH/Ar6LSIqUnp8vr9lrdDgAAAAAArZ7DGGOsbuJ4AoGAPB6PysrKuOwRLVJeYZ6m5k9VyITkdDiVm5mr7MHZVrcFAAAAAIDtRJMTNetdHQE78gf84dBLkkImpGn50+QP+C3uDAAAAACA1o3gC2igotKicOhVIWiCKt5VbFFHAAAAAABAIvgCGiw9OV1OR+Su5HK45EvyWdQRAAAAAACQCL6ABvO6vcrNzJXL4ZJUHnoty1zGBPcAAAAAAFiMye2BRuIP+FW8q1i+JB+hFwAAAAAATSSanKhNM/UE2J7X7SXwAgAAAACgBeFSR6CR+AN+FZQUcDdHAAAAAABaCEZ8AY0grzBPU/OnKmRCcjqcys3MVfbgbKvbAgAAAACgVWPEF9BA/oA/HHpJUsiENC1/GiO/AAAAAACwGMEX0EBFpUXh0KtC0ARVvKvYoo4AAAAAAIBE8AU0WHpyupyOyF3J5XDJl+SzqCMAAAAAACARfAEN5nV7lZuZK+d/dyennFqWuYw7PAIAAAAAYDGCL6CxOCr9FwAAAAAAWIrgC2ggJrcHAAAAAKBlIvgCGojJ7QEAAAAAaJkIvoAG6hDXodrl7du2b+ZOAAAAAADAsQi+gAbad2hftcv3H97fzJ0AAAAAAIBjEXwBDZSenC6nI3JXcjlc8iX5LOoIAAAAAABIBF9Ag3ndXuVm5srlcEkqD72WZS6T1+21uDMAAAAAAFo3hzHGWN3E8QQCAXk8HpWVlcntdlvdDlAtf8Cv4l3F8iX5CL0AAAAAAGgi0eREbZqpJ8D2vG4vgRcAAAAAAC0IlzoCAAAAAADAlgi+AAAAAAAAYEsEXwAAAAAAALAlgi8AAAAAAADYEsEXAAAAAAAAbIngCwAAAAAAALZE8AUAAAAAAABbIvgCAAAAAACALRF8AQAAAAAAwJYIvgAAAAAAAGBLBF8AAAAAAACwJYIvAAAAAAAA2BLBFwAAAAAAAGyJ4AsAAAAAAAC2RPAFAAAAAAAAW2pjdQN1YYyRJAUCAYs7AQAAAAAAgJUq8qGKvKg2MRF87d27V5KUkpJicScAAAAAAABoCfbu3SuPx1NrjcPUJR6zWCgU0pYtW9SxY0c5HA6r22kUgUBAKSkp2rx5s9xut9XtAKgG+ykQG9hXgdjAvgrEBvZVxAJjjPbu3auePXvK6ax9Fq+YGPHldDrl9XqtbqNJuN1uDiZAC8d+CsQG9lUgNrCvArGBfRUt3fFGelVgcnsAAAAAAADYEsEXAAAAAAAAbIngyyLx8fGaP3++4uPjrW4FQA3YT4HYwL4KxAb2VSA2sK/CbmJicnsAAAAAAAAgWoz4AgAAAAAAgC0RfAEAAAAAAMCWCL4AAAAAAABgSwRfAAAAAAAAsCWCLws89NBD6t27txISEjR8+HCtXr3a6pYAHCMnJ0fDhg1Tx44d1bVrV40fP14bNmywui0Ax/Hb3/5WDodDM2fOtLoVAJV88803uuaaa5ScnKzExEQNGDBAH330kdVtAThGMBjU7bffrrS0NCUmJqpPnz666667xP3wEOsIvprZM888o1mzZmn+/PkqLCzUwIEDlZGRoe3bt1vdGoD/+sc//qHp06frgw8+0MqVK3X48GGdf/752r9/v9WtAajBmjVrtGzZMp122mlWtwKgkt27d2vkyJFq27atXnnlFX322We6//771blzZ6tbA3CMe++9Vw8//LCWLFmi9evX695779XChQu1ePFiq1sDGsRhiG+b1fDhwzVs2DAtWbJEkhQKhZSSkqIZM2Zozpw5FncHoDo7duxQ165d9Y9//ENnn3221e0AqGTfvn0aPHiw/vCHP+g3v/mNBg0apEWLFlndFoD/mjNnjt59913985//tLoVALXIzMxUt27dlJeXF1526aWXKjExUU8++aSFnQENw4ivZnTo0CGtXbtW48aNCy9zOp0aN26c3n//fQs7A1CbsrIySVJSUpLFnQCozvTp0/XjH/844vcrgJbj73//u4YOHarLL79cXbt21emnn65HHnnE6rYAVHLmmWdq1apV+uKLLyRJ//rXv/TOO+/oggsusLgzoGHaWN1Aa7Jz504Fg0F169YtYnm3bt30+eefW9QVgNqEQiHNnDlTI0eOVP/+/a1uB0Alf/7zn1VYWKg1a9ZY3QqAGnz11Vd6+OGHNWvWLP3qV7/SmjVrdPPNNysuLk5ZWVlWtwfgv+bMmaNAIKBTTjlFLpdLwWBQd999t66++mqrWwMahOALAGoxffp0ffLJJ3rnnXesbgVAJZs3b9Ytt9yilStXKiEhwep2ANQgFApp6NChuueeeyRJp59+uj755BMtXbqU4AtoQZ599lk99dRTevrpp3Xqqadq3bp1mjlzpnr27Mm+iphG8NWMunTpIpfLpW3btkUs37Ztm7p3725RVwBqctNNNyk/P19vv/22vF6v1e0AqGTt2rXavn27Bg8eHF4WDAb19ttva8mSJTp48KBcLpeFHQKQpB49eqhfv34Ry/r27au//vWvFnUEoDq/+MUvNGfOHF155ZWSpAEDBujrr79WTk4OwRdiGnN8NaO4uDgNGTJEq1atCi8LhUJatWqVRowYYWFnAI5ljNFNN92kFStW6M0331RaWprVLQGoxrnnnqv//Oc/WrduXfgxdOhQXX311Vq3bh2hF9BCjBw5Uhs2bIhY9sUXXyg1NdWijgBU58CBA3I6IyMCl8ulUChkUUdA42DEVzObNWuWsrKyNHToUJ1xxhlatGiR9u/frylTpljdGoD/mj59up5++mn97W9/U8eOHbV161ZJksfjUWJiosXdAajQsWPHKnPvtW/fXsnJyczJB7QgP//5z3XmmWfqnnvu0YQJE7R69Wrl5uYqNzfX6tYAHOOiiy7S3XffrRNPPFGnnnqqPv74Yz3wwAO67rrrrG4NaBCHMcZY3URrs2TJEt13333aunWrBg0apN///vcaPny41W0B+C+Hw1Ht8uXLl2vy5MnN2wyAqIwZM0aDBg3SokWLrG4FwDHy8/M1d+5cFRUVKS0tTbNmzdINN9xgdVsAjrF3717dfvvtWrFihbZv366ePXtq4sSJmjdvnuLi4qxuD6g3gi8AAAAAAADYEnN8AQAAAAAAwJYIvgAAAAAAAGBLBF8AAAAAAACwJYIvAAAAAAAA2BLBFwAAAAAAAGyJ4AsAAAAAAAC2RPAFAAAAAAAAWyL4AgAAAAAAgC0RfAEAAAAAAMCWCL4AAAAAAABgSwRfAAAAAAAAsCWCLwAAAAAAANjS/wcjHXW+ir4XhQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1500x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" similarity\n",
"count 50.000000\n",
"mean 0.382425\n",
"std 0.078304\n",
"min 0.241653\n",
"10% 0.292252\n",
"25% 0.319892\n",
"50% 0.381103\n",
"75% 0.433659\n",
"90% 0.477994\n",
"max 0.576431\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMYAAAIQCAYAAABqumLEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABidElEQVR4nO3de1iUdf7/8dcwyEEU1AhQhxCB9VAqpUZapimJtrXaQc0OKpH6tcPm0mF1K82sSDv8rLQ8LJpZu9m2nbYtO6DWWqau5nYyQ5N0UvCwCooFyty/P+5lcDjJADLA/Xxc11zD3POee95zM3MDLz7357YZhmEIAAAAAAAAsBg/XzcAAAAAAAAA+ALBGAAAAAAAACyJYAwAAAAAAACWRDAGAAAAAAAASyIYAwAAAAAAgCURjAEAAAAAAMCSCMYAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAoNGx2Wx66KGHfN1GpSZMmKBOnTrV6zoHDRqkQYMGuW/n5OTIZrPpxRdfrNfneeihh2Sz2WpU++KLL8pmsyknJ6deezidVatWKTExUUFBQbLZbDpy5EiDPj8axtq1a2Wz2bR27dp6W6c37280nNtuu02XX365r9totKZNm6akpCRftwEAlkYwBgCo1s6dOzV58mR17txZQUFBCg0N1cUXX6xnnnlGv/zyi6/bQx099thjeuutt3zdhiTp0KFDGj16tIKDg7VgwQKtWLFCISEhvm4LqLO9e/fqoYce0tatW33dSoPatWuX/vznP+tPf/qTe1lp8F968fPzU7t27TR8+HCtX7/eh936xtSpU/Wf//xH77zzjq9bAQDL8vd1AwCAxuuf//ynRo0apcDAQI0bN07nnXeeiouLtW7dOt1777369ttvtXjx4np/3l9++UX+/o3zR9SSJUvkcrnqdZ0ffvhhva6vKg888ICmTZvmseyxxx7Tddddp5EjR3osv/nmm3X99dcrMDCwQXqTpE2bNuno0aOaPXu2kpOTG+x5gTNt7969mjVrljp16qTExERft9NgnnnmGcXGxuqyyy6rcN/YsWN1xRVXqKSkRD/88IOef/55XXbZZdq0aZN69Ojhg259IyoqSiNGjNCTTz6p3/3ud75uBwAsqXH+1QEA8Lldu3bp+uuvV0xMjFavXq327du777v99tu1Y8cO/fOf/zwjzx0UFHRG1lsfWrRoUe/rDAgIqPd1nqqwsFAhISHy9/evceBot9tlt9vPaF/l7d+/X5LUpk2beltn6Ws/U/UAKnfixAm98sor+r//+79K77/gggt00003uW8PGDBAw4cP1wsvvKDnn3++odpsFEaPHq1Ro0bpxx9/VOfOnX3dDgBYDodSAgAqNXfuXB07dkyZmZkeoVip+Ph43XXXXe7bJ0+e1OzZsxUXF6fAwEB16tRJf/rTn1RUVOTxuH//+99KSUlReHi4goODFRsbq1tuucWjpvwcY6VzB+3YsUMTJkxQmzZtFBYWptTUVB0/frxCby+//LJ69+6t4OBgtWvXTtdff7327Nlz2td89OhRTZ06VZ06dVJgYKAiIiJ0+eWXa8uWLe6a8nOMlR4W9OSTT2rBggXq3LmzWrZsqaFDh2rPnj0yDEOzZ8+Ww+FQcHCwRowYof/+978ez1t+jrHKfPXVV5owYYL7kNaoqCjdcsstOnTokEdd6bb67rvvdMMNN6ht27a65JJLPO4rZbPZVFhYqOXLl7sPa5owYYKkqucYe//99zVgwACFhISodevW+u1vf6tvv/3WoyY3N1epqalyOBwKDAxU+/btNWLEiGrnKxs0aJDGjx8vSerbt69HL5L0t7/9zf09DQ8P10033aSff/7ZYx0TJkxQq1attHPnTl1xxRVq3bq1brzxxiqfs7ptJdX8fbRhwwZdccUVatu2rUJCQtSzZ08988wzHjWrV692b7c2bdpoxIgR2rZtW6X9/PDDD7rpppsUFhams88+Ww8++KAMw9CePXs0YsQIhYaGKioqSk899ZTH40vn7Xrttdc0a9YsdezYUa1bt9Z1112n/Px8FRUVaerUqYqIiFCrVq2Umppa4fNZ09c9aNAgnXfeefruu+902WWXqWXLlurYsaPmzp1bYX1Op1MjR45USEiIIiIi9Ic//KHS5y3dlsOGDVNYWJhatmypgQMH6rPPPqtQt27dOvXt21dBQUGKi4vTokWLKl1fZbKzs3XttdcqKipKQUFBcjgcuv7665Wfn39GtsPatWvVt29fSVJqaqr7s3bqHII1ed212Q9eeOGFatmypdq2batLL720wujUM/V5lszv0cGDB2s8+nPAgAGSzMP3T3XkyBFNnTpV0dHRCgwMVHx8vObMmeMxcrc+9sOS9Pzzz+vcc89VYGCgOnTooNtvv91jnsM77rhDrVq1qnR7jx07VlFRUSopKXEvq8n2leTeRm+//XaNthUAoH4xYgwAUKl//OMf6ty5s/r371+j+ltvvVXLly/Xddddp7vvvlsbNmxQRkaGtm3bpjfffFOSOSJo6NChOvvsszVt2jS1adNGOTk5euONN2r0HKNHj1ZsbKwyMjK0ZcsW/fnPf1ZERITmzJnjrnn00Uf14IMPavTo0br11lt14MABPffcc7r00kv15ZdfVjsa6f/+7//0+uuv64477lD37t116NAhrVu3Ttu2bdMFF1xQbW+vvPKKiouLdeedd+q///2v5s6dq9GjR2vw4MFau3at/vjHP2rHjh167rnndM8992jp0qU1es2lPvroI/34449KTU1VVFSU+zDWb7/9Vl988UWFScdHjRqlhIQEPfbYYzIMo9J1rlixQrfeeqsuvPBCTZo0SZIUFxdXZQ8rVqzQ+PHjlZKSojlz5uj48eN64YUXdMkll+jLL790B4bXXnutvv32W915553q1KmT9u/fr48++ki7d++u8sQF999/v7p06aLFixfr4YcfVmxsrLuXF198Uampqerbt68yMjKUl5enZ555Rp999lmF7+nJkyeVkpKiSy65RE8++aRatmx52m1b2baq6fvoo48+0pVXXqn27dvrrrvuUlRUlLZt26Z3333XHRx//PHHGj58uDp37qyHHnpIv/zyi5577jldfPHF2rJlS4VtMmbMGHXr1k2PP/64/vnPf+qRRx5Ru3bttGjRIg0ePFhz5szRK6+8onvuuUd9+/bVpZde6vH4jIwMBQcHa9q0ae73XIsWLeTn56fDhw/roYce0hdffKEXX3xRsbGxmjFjhvux3nx+Dh8+rGHDhumaa67R6NGj9frrr+uPf/yjevTooeHDh0syD4seMmSIdu/erd///vfq0KGDVqxYodWrV1f4PqxevVrDhw9X7969NXPmTPn5+WnZsmUaPHiw/vWvf+nCCy+UJH399dfu/chDDz2kkydPaubMmYqMjDzt97q4uFgpKSkqKirSnXfeqaioKP3888969913deTIEYWFhdX7dujWrZsefvhhzZgxQ5MmTXIHQKX71pq+7lI12Q/OmjVLDz30kPr376+HH35YAQEB2rBhg1avXq2hQ4dKOrOfZ0n6/PPPZbPZdP7555/2+yLJHbS1bdvWvez48eMaOHCgfv75Z02ePFnnnHOOPv/8c02fPl379u3TvHnzPNZRl/3wQw89pFmzZik5OVlTpkzR9u3b9cILL2jTpk367LPP1KJFC40ZM0YLFixwTzNwap//+Mc/NGHCBPdI25puX0kKCwtTXFycPvvsM/3hD3+o0fYCANQjAwCAcvLz8w1JxogRI2pUv3XrVkOSceutt3osv+eeewxJxurVqw3DMIw333zTkGRs2rSp2vVJMmbOnOm+PXPmTEOSccstt3jUXX311cZZZ53lvp2Tk2PY7Xbj0Ucf9aj7+uuvDX9//wrLywsLCzNuv/32amvGjx9vxMTEuG/v2rXLkGScffbZxpEjR9zLp0+fbkgyevXqZZw4ccK9fOzYsUZAQIDx66+/upcNHDjQGDhwYIV1Llu2zL3s+PHjFXr561//akgyPv30U/ey0m01duzYCvWl950qJCTEGD9+fIXaZcuWGZKMXbt2GYZhGEePHjXatGljTJw40aMuNzfXCAsLcy8/fPiwIcl44oknKqzzdEqf89T3R3FxsREREWGcd955xi+//OJe/u677xqSjBkzZriXjR8/3pBkTJs2rUbPV9W2qun76OTJk0ZsbKwRExNjHD582KPW5XK5v05MTDQiIiKMQ4cOuZf95z//Mfz8/Ixx48ZV6GfSpEnuZSdPnjQcDodhs9mMxx9/3L388OHDRnBwsMf3bs2aNYYk47zzzjOKi4vdy8eOHWvYbDZj+PDhHj3269fP473szedn4MCBhiTjpZdeci8rKioyoqKijGuvvda9bN68eYYk47XXXnMvKywsNOLj4w1Jxpo1a9zbKyEhwUhJSfHYdsePHzdiY2ONyy+/3L1s5MiRRlBQkPHTTz+5l3333XeG3W6v8P4u78svvzQkGX/729+qrDkT22HTpk0VPtPevu6a7gezs7MNPz8/4+qrrzZKSkoqPJ9hNMzn+aabbvLoq1Tp/m3WrFnGgQMHjNzcXONf//qX0bdv3wrfm9mzZxshISHGDz/84LGOadOmGXa73di9e7fHOmu7H96/f78REBBgDB061GObzZ8/35BkLF261L39Onbs6PG9NQzDeO211zz2xTXdvqcaOnSo0a1bt2q2KADgTOFQSgBABQUFBZKk1q1b16j+vffekySlp6d7LL/77rslyT0XWekoi3fffVcnTpzwuq/yc9UMGDBAhw4dcvf7xhtvyOVyafTo0Tp48KD7EhUVpYSEBK1Zs6ba9bdp00YbNmzQ3r17ve5t1KhR7tEmkpSUlCRJuummmzzm9UpKSlJxcXGFwwBPJzg42P31r7/+qoMHD+qiiy6SJI9DPUtVNa9PbX300Uc6cuSIxo4d67Ft7Xa7kpKS3Ns2ODhYAQEBWrt2rQ4fPlzn5/33v/+t/fv367bbbvOYe+63v/2tunbtWuk8d1OmTPHqOcpvq5q+j7788kvt2rVLU6dOrTASsXQE3759+7R161ZNmDBB7dq1c9/fs2dPXX755e7PzqluvfVW99d2u119+vSRYRhKS0tzL2/Tpo26dOmiH3/8scLjx40b5zEXXlJSkgzDqHDIclJSkvbs2aOTJ0969bpLtWrVymOOqICAAF144YUePb333ntq3769rrvuOveyli1bukcoltq6dauys7N1ww036NChQ+7nLiws1JAhQ/Tpp5/K5XKppKREH3zwgUaOHKlzzjnH/fhu3bopJSWlwrYor/Qz+sEHH1R6ONyZ2g5VqenrPtXp9oNvvfWWXC6XZsyYIT8/z1/1S9+XDfF5PnTokMfor/Jmzpyps88+W1FRURowYIC2bdump556yuO98re//U0DBgxQ27ZtPfpMTk5WSUmJPv30U4911nY//PHHH6u4uFhTp0712GYTJ05UaGioez9js9k0atQovffeezp27Ji7buXKlerYsaP7UOyabt9Tlb5GAEDD41BKAEAFoaGhksw5t2rip59+kp+fn+Lj4z2WR0VFqU2bNvrpp58kSQMHDtS1116rWbNm6f/9v/+nQYMGaeTIkbrhhhtqdPbDU/8QlsoOuTl8+LBCQ0OVnZ0twzCUkJBQ6eNPN3H+3LlzNX78eEVHR6t379664oorNG7cuBpNhly+t9I/zqKjoytd7u0fmf/97381a9Ysvfrqq+5J6kuVnxtJkmJjY71a/+lkZ2dLkgYPHlzp/aXvmcDAQM2ZM0d33323IiMjddFFF+nKK6/UuHHjFBUV5fXzlr53unTpUuG+rl27at26dR7L/P395XA4vHqO8tuqpu+j0rmQzjvvvCrXXV3/3bp10wcffFBhwv/K3ktBQUEKDw+vsLz8HHNVPV6q/L3ocrmUn5+vs846y+vPj8PhqHAIb9u2bfXVV1+5b//000+Kj4+vUFd+e5S+v0rnmatM6Txpv/zyS6U9dunSpdKg8VSxsbFKT0/X008/rVdeeUUDBgzQ7373O/ecbqW91Pd2qEpNX/epAdPp9oM7d+6Un5+funfvftrnPdOfZ6OKw7gladKkSRo1apR+/fVXrV69Ws8++6zH/FylfX711Vc6++yzK11H+X1hbffDVX1OAwIC1LlzZ/f9knmo87x58/TOO+/ohhtu0LFjx/Tee+9p8uTJ7vdBTbfvqQzDqPA+AgA0DIIxAEAFoaGh6tChg7755huvHne6X+ptNptef/11ffHFF/rHP/6hDz74QLfccoueeuopffHFF2rVqlW1j6/qLImlf3y5XC7ZbDa9//77ldaebv2jR4/WgAED9Oabb+rDDz/UE088oTlz5uiNN95wz5nkbW+n67mmRo8erc8//1z33nuvEhMT1apVK7lcLg0bNqzCiBLJc4RZfSh9jhUrVlT6B/GpozGmTp2qq666Sm+99ZY++OADPfjgg8rIyNDq1atrPN9QbQUGBlYYJXM65bdVXd9HdVXZc3rzPqrte9Hb111f7+3S55akJ554QomJiZXWtGrVqspJ+73x1FNPacKECXr77bf14Ycf6ve//70yMjL0xRdfyOFwNOh2qOnrrq/nK/+8Z/LzfNZZZ1X7D4CEhAT3pPNXXnml7Ha7pk2bpssuu0x9+vRx93n55Zfrvvvuq3Qdv/nNbzxun+n9sCRddNFF6tSpk1577TXdcMMN+sc//qFffvlFY8aMcdd4s31LHT58uEL4DQBoGARjAIBKXXnllVq8eLHWr1+vfv36VVsbExMjl8ul7OxsdevWzb08Ly9PR44cUUxMjEf9RRddpIsuukiPPvqo/vKXv+jGG2/Uq6++6nEIWW3ExcXJMAzFxsZW+IOpptq3b6/bbrtNt912m/bv368LLrhAjz766GmDsTPp8OHDysrK0qxZszwmSi8dlVAXNR2hUDoRfkRERI3OMhcXF6e7775bd999t7Kzs5WYmKinnnpKL7/8slf9lb53tm/fXmH0xfbt2yu8t+pDTd9Hpdvkm2++qXKbnNp/ed9//73Cw8M9Rov5Un18fsqLiYnRN998U2E0TPntUbotQ0NDq31/nX322QoODq70vV/ZNq5Kjx491KNHDz3wwAP6/PPPdfHFF2vhwoV65JFHzsh2qOpzVtPX7Y24uDi5XC599913VYZtDfF57tq1q1555RXl5+d7HN5Ylfvvv19LlizRAw88oFWrVrmf99ixY/W2bapy6uf01BHCxcXF2rVrV4XnHz16tJ555hkVFBRo5cqV6tSpk/vQ9tK+pZpvX0natWuXevXqVdeXAgCoBeYYAwBU6r777lNISIhuvfVW5eXlVbh/586deuaZZyRJV1xxhSRVOEPY008/LcmcD0oyA57y/6Ev/cOtPkaCXHPNNbLb7Zo1a1aF5zEMo9LDzkqVlJRUOCQxIiJCHTp0qJfe6qJ0tEP511R+e9dGSEiIjhw5ctq6lJQUhYaG6rHHHqt0frgDBw5IMs/O9uuvv3rcFxcXp9atW9dqO/bp00cRERFauHChx+Pff/99bdu2zf3eqk81fR9dcMEFio2N1bx58ypsw9LHtW/fXomJiVq+fLlHzTfffKMPP/zQ/dlpDOry+anKFVdcob179+r11193Lzt+/LgWL17sUde7d2/FxcXpySef9Ji7qVTp+8tutyslJUVvvfWWdu/e7b5/27Zt+uCDD07bT0FBgXtOtVI9evSQn5+f+/11JrZDafhZ/n1S09ftjZEjR8rPz08PP/xwhdGkpa+nIT7P/fr1k2EY2rx5c436btOmjSZPnqwPPvhAW7dulWQGUOvXr6/0e3vkyJEK38vaSk5OVkBAgJ599lmP73lmZqby8/Mr7GfGjBmjoqIiLV++XKtWrdLo0aM97q/p9i2Vn5+vnTt31vgs0ACA+sWIMQBApeLi4vSXv/xFY8aMUbdu3TRu3Didd955Ki4u1ueff66//e1vmjBhgiSpV69eGj9+vBYvXqwjR45o4MCB2rhxo5YvX66RI0fqsssukyQtX75czz//vK6++mrFxcXp6NGjWrJkiUJDQ+slIIiLi9Mjjzyi6dOnKycnRyNHjlTr1q21a9cuvfnmm5o0aZLuueeeSh979OhRORwOXXfdderVq5datWqljz/+WJs2bdJTTz1V597qIjQ0VJdeeqnmzp2rEydOqGPHjvrwww+1a9euOq+7d+/e+vjjj/X000+rQ4cOio2NdU9YXb6HF154QTfffLMuuOACXX/99Tr77LO1e/du/fOf/9TFF1+s+fPn64cfftCQIUM0evRode/eXf7+/nrzzTeVl5en66+/3uv+WrRooTlz5ig1NVUDBw7U2LFjlZeXp2eeeUadOnXSH/7whzpvg/Jq+j7y8/PTCy+8oKuuukqJiYlKTU1V+/bt9f333+vbb791/zH/xBNPaPjw4erXr5/S0tL0yy+/6LnnnlNYWJgeeuiheu+/tury+anKxIkTNX/+fI0bN06bN29W+/bttWLFCrVs2dKjzs/PT3/+8581fPhwnXvuuUpNTVXHjh31888/a82aNQoNDdU//vEPSdKsWbO0atUqDRgwQLfddptOnjyp5557Tueee+5p5/VavXq17rjjDo0aNUq/+c1vdPLkSa1YsUJ2u13XXnvtGdsOcXFxatOmjRYuXKjWrVsrJCRESUlJio2NrfHrrqn4+Hjdf//9mj17tgYMGKBrrrlGgYGB2rRpkzp06KCMjIwG+TxfcsklOuuss/Txxx9XOddWeXfddZfmzZunxx9/XK+++qruvfdevfPOO7ryyis1YcIE9e7dW4WFhfr666/1+uuvKycnp14OPzz77LM1ffp0zZo1S8OGDdPvfvc7bd++Xc8//7z69u3rcXIFyQzFS7dzUVGRx2GUUs33l6U+/vhjGYahESNG1Pm1AABq4cye9BIA0NT98MMPxsSJE41OnToZAQEBRuvWrY2LL77YeO6559ynujcMwzhx4oQxa9YsIzY21mjRooURHR1tTJ8+3aNmy5YtxtixY41zzjnHCAwMNCIiIowrr7zS+Pe//+3xnJKMmTNnum/PnDnTkGQcOHDAo27ZsmWGJGPXrl0ey//+978bl1xyiRESEmKEhIQYXbt2NW6//XZj+/btVb7OoqIi49577zV69epltG7d2ggJCTF69eplPP/88x5148ePN2JiYty3d+3aZUgynnjiCY+6NWvWGJKMv/3tb5X2vGnTJveygQMHGgMHDqywzmXLlrmXOZ1O4+qrrzbatGljhIWFGaNGjTL27t1b42116n2n+v77741LL73UCA4ONiQZ48eP9+iz/LZds2aNkZKSYoSFhRlBQUFGXFycMWHCBPf38ODBg8btt99udO3a1QgJCTHCwsKMpKQk47XXXqvQT3mVbZtSK1euNM4//3wjMDDQaNeunXHjjTcaTqfTo2b8+PFGSEjIaZ+n/PaobFsZRs3fR+vWrTMuv/xy9/umZ8+exnPPPedR8/HHHxsXX3yxERwcbISGhhpXXXWV8d1339Won6pe18CBA41zzz3Xfdub91x1z1eT113+uU/t9dTPh2EYxk8//WT87ne/M1q2bGmEh4cbd911l7Fq1SpDkrFmzRqP2i+//NK45pprjLPOOssIDAw0YmJijNGjRxtZWVkedZ988onRu3dvIyAgwOjcubOxcOHCSt/f5f3444/GLbfcYsTFxRlBQUFGu3btjMsuu8z4+OOPK9TW93Z4++23je7duxv+/v4VPt81ed3e7geXLl3q/sy0bdvWGDhwoPHRRx951JzJz7NhGMbvf/97Iz4+3mNZVfvMUhMmTDDsdruxY8cOwzAM4+jRo8b06dON+Ph4IyAgwAgPDzf69+9vPPnkk0ZxcXG16/T2MzF//nyja9euRosWLYzIyEhjypQpxuHDhyvt8/777zckVXh95Z+/uu1basyYMcYll1xS5XoAAGeWzTBqMeskAAAAAFTjxx9/VNeuXfX+++9ryJAhvm6nUcrNzVVsbKxeffVVRowBgI8QjAEAAAA4I6ZMmaIdO3boo48+8nUrjdK0adO0evVqbdy40detAIBlEYwBAAAAAADAkjgrJQAAAAAAACyJYAwAAAAAAACWRDAGAAAAAAAASyIYAwAAAAAAgCX5+7qB+uByubR37161bt1aNpvN1+0AAAAAAADAhwzD0NGjR9WhQwf5+VU9LqxZBGN79+5VdHS0r9sAAAAAAABAI7Jnzx45HI4q728WwVjr1q0lmS82NDTUx90AAAAAAADAlwoKChQdHe3OjKrSLIKx0sMnQ0NDCcYAAAAAAAAgSaedcovJ9wEAAAAAAGBJBGMAAAAAAACwJIIxAAAAAAAAWFKzmGMMAAAAAADAWy6XS8XFxb5uA7XQokUL2e32Oq+HYAwAAAAAAFhOcXGxdu3aJZfL5etWUEtt2rRRVFTUaSfYrw7BGAAAAAAAsBTDMLRv3z7Z7XZFR0fLz4+ZppoSwzB0/Phx7d+/X5LUvn37Wq+LYAwAAAAAAFjKyZMndfz4cXXo0EEtW7b0dTuoheDgYEnS/v37FRERUevDKolEAQAAAACApZSUlEiSAgICfNwJ6qI01Dxx4kSt10EwBgAAAAAALKkuc1PB9+rj+0cwBgAAAAAAAEsiGAMAAAAAAGjiJkyYoJEjR9ZpHWvXrpXNZtORI0ckSS+++KLatGlT595ycnJks9m0devWOq+rvjH5PgAAAAAAQBP3zDPPyDCMOq2jf//+2rdvn8LCwuqpK1N0dLT27dun8PBwSWYAd9lll+nw4cP1ErzVBcEYAAAAAABAE1cfYVZAQICioqLqoZsyxcXFZ2S99YVDKQEAAAAAAGrL6ZTWrDGvG8Drr7+uHj16KDg4WGeddZaSk5NVWFhY4VDKQYMG6c4779TUqVPVtm1bRUZGasmSJSosLFRqaqpat26t+Ph4vf/+++7HlD+UsrydO3dqxIgRioyMVKtWrdS3b199/PHHHjWdOnXS7NmzNW7cOIWGhmrSpEkeh1Lm5OTosssukyS1bdtWNptNEyZM0EsvvaSzzjpLRUVFHusbOXKkbr755vrZeJUgGAMAAAAAAKiNzEwpJkYaPNi8zsw8o0+3b98+jR07Vrfccou2bdumtWvX6pprrqnyEMrly5crPDxcGzdu1J133qkpU6Zo1KhR6t+/v7Zs2aKhQ4fq5ptv1vHjx2v0/MeOHdMVV1yhrKwsffnllxo2bJiuuuoq7d6926PuySefVK9evfTll1/qwQcf9LgvOjpaf//73yVJ27dv1759+/TMM89o1KhRKikp0TvvvOOu3b9/v/75z3/qlltu8WYzeYVgrLFq4MQZAAAAAAB4wemUJk2SXC7ztsslTZ58Rv+O37dvn06ePKlrrrlGnTp1Uo8ePXTbbbepVatWldb36tVLDzzwgBISEjR9+nQFBQUpPDxcEydOVEJCgmbMmKFDhw7pq6++qtHz9+rVS5MnT9Z5552nhIQEzZ49W3FxcR5hliQNHjxYd999t+Li4hQXF+dxn91uV7t27SRJERERioqKUlhYmIKDg3XDDTdo2bJl7tqXX35Z55xzjgYNGuTFVvIOwVhj1MCJMwAAAAAA8FJ2dlkoVqqkRNqx44w9Za9evTRkyBD16NFDo0aN0pIlS3T48OEq63v27On+2m6366yzzlKPHj3cyyIjIyWZI7Nq4tixY7rnnnvUrVs3tWnTRq1atdK2bdsqjBjr06ePNy/LbeLEifrwww/1888/SzLPijlhwgTZbLZara8mCMYaGx8kzgAAAAAAwEsJCZJfuVjFbpfi48/YU9rtdn300Ud6//331b17dz333HPq0qWLdu3aVWl9ixYtPG7bbDaPZaWBk6t8wFeFe+65R2+++aYee+wx/etf/9LWrVvVo0cPFRcXe9SFhIR487Lczj//fPXq1UsvvfSSNm/erG+//VYTJkyo1bpqimCssfFB4gwAAAAAALzkcEiLF5thmGReL1pkLj+DbDabLr74Ys2aNUtffvmlAgIC9Oabb57R5yz12WefacKECbr66qvVo0cPRUVFKScnx+v1BAQESJJKSkoq3HfrrbfqxRdf1LJly5ScnKzo6Oi6tl0tgrHGxgeJMwAAAAAAqIW0NCknx5wjPCfHvH0GbdiwQY899pj+/e9/a/fu3XrjjTd04MABdevW7Yw+b6mEhAS98cYb2rp1q/7zn//ohhtuqPFos1PFxMTIZrPp3Xff1YEDB3Ts2DH3fTfccIOcTqeWLFlyRifdL0Uw1tj4KHEGAAAAAAC14HBIgwY1yN/toaGh+vTTT3XFFVfoN7/5jR544AE99dRTGj58+Bl/bkl6+umn1bZtW/Xv319XXXWVUlJSdMEFF3i9no4dO2rWrFmaNm2aIiMjdccdd7jvCwsL07XXXqtWrVpp5MiR9dh95WxGVef0bEIKCgoUFham/Px8hYaG+rqd+uF0modPxscTigEAAAAAUI9+/fVX7dq1S7GxsQoKCvJ1OyhnyJAhOvfcc/Xss89WW1fd97GmWZF/vXSM+udwEIgBAAAAAADLOHz4sNauXau1a9fq+eefb5DnJBgDAAAAAACAz51//vk6fPiw5syZoy5dujTIcxKMAQAAAAAAwOdqc4bLumLyfQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAABYkmEYvm4BdeByueq8DuYYAwAAAAAAltKiRQvZbDYdOHBAZ599tmw2m69bghcMw1BxcbEOHDggPz8/BQQE1HpdBGMAAAAAAMBS7Ha7HA6HnE6nTyZ8R/1o2bKlzjnnHPn51f6ASIIxAAAAAABgOa1atVJCQoJOnDjh61ZQC3a7Xf7+/nUe7UcwBgAAAAAALMlut8tut/u6DfgQk+8DAAAAAADAkgjGAAAAAAAAYEkEYwAAAAAAALAkgjEAAAAAAABYEsEYAAAAAAAALIlgDAAAAAAAAJZEMAYAAAAAAABLIhgDAAAAAACAJRGMAQAAAAAAwJIIxgAAAAAAAGBJBGMAAAAAAACwJIIxAAAAAAAAWBLBGAAAAAAAACyJYAwAAAAAAACWRDAGAAAAAAAAS6pVMLZgwQJ16tRJQUFBSkpK0saNG6usffHFF2Wz2TwuQUFBHjUTJkyoUDNs2LDatAYAAAAAAADUiL+3D1i5cqXS09O1cOFCJSUlad68eUpJSdH27dsVERFR6WNCQ0O1fft2922bzVahZtiwYVq2bJn7dmBgoLetAQAAAAAAADXm9Yixp59+WhMnTlRqaqq6d++uhQsXqmXLllq6dGmVj7HZbIqKinJfIiMjK9QEBgZ61LRt29bb1gAAAAAAAIAa8yoYKy4u1ubNm5WcnFy2Aj8/JScna/369VU+7tixY4qJiVF0dLRGjBihb7/9tkLN2rVrFRERoS5dumjKlCk6dOhQlesrKipSQUGBxwUAAABAE+d0SmvWmNcAADQAr4KxgwcPqqSkpMKIr8jISOXm5lb6mC5dumjp0qV6++239fLLL8vlcql///5ynvLDbtiwYXrppZeUlZWlOXPm6JNPPtHw4cNVUlJS6TozMjIUFhbmvkRHR3vzMgAAAAA0NpmZUkyMNHiweZ2Z6euOAAAWYDMMw6hp8d69e9WxY0d9/vnn6tevn3v5fffdp08++UQbNmw47TpOnDihbt26aezYsZo9e3alNT/++KPi4uL08ccfa8iQIRXuLyoqUlFRkft2QUGBoqOjlZ+fr9DQ0Jq+HAAAAACNgdNphmEuV9kyu13KyZEcDp+1BQBougoKChQWFnbarMirEWPh4eGy2+3Ky8vzWJ6Xl6eoqKgaraNFixY6//zztWPHjiprOnfurPDw8CprAgMDFRoa6nEBAAAA0ERlZ3uGYpJUUiJV8zcDAAD1watgLCAgQL1791ZWVpZ7mcvlUlZWlscIsuqUlJTo66+/Vvv27auscTqdOnToULU1AAAAAJqJhATJr9yfJna7FB/vm34AAJbh9Vkp09PTtWTJEi1fvlzbtm3TlClTVFhYqNTUVEnSuHHjNH36dHf9ww8/rA8//FA//vijtmzZoptuukk//fSTbr31VknmxPz33nuvvvjiC+Xk5CgrK0sjRoxQfHy8UlJS6ullAgAAAGi0HA5p8WIzDJPM60WLOIwSAHDG+Xv7gDFjxujAgQOaMWOGcnNzlZiYqFWrVrkn5N+9e7f8Tvlvz+HDhzVx4kTl5uaqbdu26t27tz7//HN1795dkmS32/XVV19p+fLlOnLkiDp06KChQ4dq9uzZCgwMrKeXCQAAAKBRS0uTUlLMwyfj4wnFAAANwqvJ9xurmk6oBgAAAAAAgObvjEy+DwAAAAAAADQXBGMAAAAAAACwJIIxAAAAAAAAWBLBGAAAAAAAACyJYAwAAAAAAACWRDAGAAAAAAAASyIYAwAAAAAAgCURjAEAAAAAAMCSCMYAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAAAAlkQwBgAAAAAAAEsiGAMAAAAAAIAlEYwBAAAAAADAkgjGAAAAAAAAYEkEYwAAAAAAALAkgjEAAAAAAABYEsEYAAAAAAAALIlgDAAAAAAAAJZEMAYAAAAAAGBlTqe0Zo15bTEEYwAAAAAAAFaVmSnFxEiDB5vXmZm+7qhBEYwBAAAAAABYkdMpTZokuVzmbZdLmjzZUiPHCMYAAAAAAACsKDu7LBQrVVIi7djhm358gGAMAAAAAADAihISJL9y0ZDdLsXH+6YfHyAYAwAAAAAAsCKHQ1q82AzDJPN60SJzuUX4+7oBAAAAAAAA+EhampSSYh4+GR9vqVBMIhgDAAAAAACwNofDcoFYKQ6lBAAAAAAAgCURjAEAAAAAAMCSCMYAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAAAAlkQwBgAAAAAAAEsiGAMAAAAAALAyp1Nas8a8thiCMQAAAAAAAKvKzJRiYqTBg83rzExfd9SgCMYAAAAAAACsyOmUJk2SXC7ztsslTZ5sqZFjBGMAAAAAAABWlJ1dFoqVKimRduzwTT8+QDAGAAAAAABgRQkJkl+5aMhul+LjfdOPDxCMAQAAAAAAWJHDIS1ebIZhknm9aJG53CL8fd0AAAAAAAAAfCQtTUpJMQ+fjI+3VCgmEYwBDcvpNI/hTkiw3M4GAAAAANBIORyW/RuVQymBhmLxU+ACAAAAANDYEIwBDYFT4AIAAAAA0OgQjAENgVPgAgAAAADQ6BCMAQ2BU+ACAAAAANDoEIwBDYFT4AIAAAAA0OhwVkqgoVj8FLgAAAAAADQ2BGNAQ7LwKXABAAAAAGhsanUo5YIFC9SpUycFBQUpKSlJGzdurLL2xRdflM1m87gEBQV51BiGoRkzZqh9+/YKDg5WcnKysrOza9MaAAAAAAAAUCNeB2MrV65Uenq6Zs6cqS1btqhXr15KSUnR/v37q3xMaGio9u3b57789NNPHvfPnTtXzz77rBYuXKgNGzYoJCREKSkp+vXXX71/RQAAAAAAAEANeB2MPf3005o4caJSU1PVvXt3LVy4UC1bttTSpUurfIzNZlNUVJT7EhkZ6b7PMAzNmzdPDzzwgEaMGKGePXvqpZde0t69e/XWW2/V6kUBAAAAAAAAp+NVMFZcXKzNmzcrOTm5bAV+fkpOTtb69eurfNyxY8cUExOj6OhojRgxQt9++637vl27dik3N9djnWFhYUpKSqpynUVFRSooKPC4AAAAAAAAAN7wKhg7ePCgSkpKPEZ8SVJkZKRyc3MrfUyXLl20dOlSvf3223r55ZflcrnUv39/OZ1OSXI/zpt1ZmRkKCwszH2Jjo725mUAAAAAAAAAtZt83xv9+vXTuHHjlJiYqIEDB+qNN97Q2WefrUWLFtV6ndOnT1d+fr77smfPnnrsGAAAAAAAAFbgVTAWHh4uu92uvLw8j+V5eXmKioqq0TpatGih888/Xzt27JAk9+O8WWdgYKBCQ0M9LgAAAAAAAIA3vArGAgIC1Lt3b2VlZbmXuVwuZWVlqV+/fjVaR0lJib7++mu1b99ekhQbG6uoqCiPdRYUFGjDhg01XicAAAAAAADgLX9vH5Cenq7x48erT58+uvDCCzVv3jwVFhYqNTVVkjRu3Dh17NhRGRkZkqSHH35YF110keLj43XkyBE98cQT+umnn3TrrbdKMs9YOXXqVD3yyCNKSEhQbGysHnzwQXXo0EEjR46sv1cKAAAAAAAAnMLrYGzMmDE6cOCAZsyYodzcXCUmJmrVqlXuyfN3794tP7+ygWiHDx/WxIkTlZubq7Zt26p37976/PPP1b17d3fNfffdp8LCQk2aNElHjhzRJZdcolWrVikoKKgeXiIAAAAAAABQkc0wDMPXTdRVQUGBwsLClJ+fz3xjAAAAAAAAFlfTrOiMn5USAAAAAAAAaIwIxgAAAAAAAGBJBGMAAAAAAACwJIIxAAAAAAAAWBLBGAAAAAAAACyJYAwAAAAAAACWRDAGAAAAAAAASyIYAwAAAAAAgCURjAEAAAAAAMCSCMYAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAAAAlkQwBgAAAAAAAEsiGAMAAAAAAIAlEYwBAAAAAADAkgjGAAAAAAAAYEkEYwAAAAAAALAkf183UJ8KCyW7veJyu10KCvKsq4qfnxQcXLva48clw6i81maTWrasXe0vv0guV9V9hITUrvbXX6WSkvqpbdnS7FuSioqkkyfrpzY42NzOklRcLJ04UT+1QUFl7xVvak+cMOurEhgo+ft7X3vypLktqhIQILVo4X1tSYn5vatKixZmvbe1Lpf5XquPWn9/c1tI5mfi+PH6qfXmc88+ovJa9hHe17KPML9mH1G7WvYR5tfsI7yvZR9hfs0+ona17CPMr9lHeF/LPqLsNvsI72sbYh9R3fbzYDQD+fn5hiRDyjfMb6/n5YorPOtbtqxYU3oZONCzNjy86to+fTxrY2Kqru3e3bO2e/eqa2NiPGv79Km6Njzcs3bgwKprW7b0rL3iiqpry78zrruu+tpjx8pqx4+vvnb//rLa226rvnbXrrLae+6pvvabb8pqZ86svnbjxrLauXOrr12zpqx2/vzqa999t6x22bLqa197raz2tdeqr122rKz23Xerr50/v6x2zZrqa+fOLavduLH62pkzy2q/+ab62nvuKavdtav62ttuK6vdv7/62vHjy2qPHau+9rrrDA/V1bKPMC/sI8ou7CPMC/sI88I+wrywjyi7sI8wL+wjzAv7CPPCPqLswj7CvLCPMC/sI8yLb/YRZlaUn59vVIdDKQEAAAAAAGBJNsMwDF83UVcFBQUKCwvT3r35Cg0NrXA/Qxcrr2V4s/e1DG82v2Z4c+1q2UeYXzf6fcTPPyto9w+yd02QHA72Eewj2EdUUWvZfYT4PaIU+wjva9lH1K6WfYSJfYT3tewjTFbdRxQUFKhDhzDl51eeFZVqVsHY6V4sAADVysyUJk0yf6L7+UmLF0tpab7uCgAAAICXapoVcSglAACS5HSWhWKSeT15srkcAAAAQLNEMAYAgCRlZ1cc+11SIu3Y4Zt+AAAAAJxxBGMAAEhSQkLZ5CGl7HYpPt43/QAAAAA44wjGAACQJIfDnFOsdAZcu11atMhcDgAAAKBZ8vd1AwAANBppaVJKinn4ZHw8oRgAAADQzBGMAQBwKoeDQAwAAACwCA6lBAAAAAAAgCURjAEAAAAAAMCSCMYAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAATY/TKa1ZY14DAADUEsEYAAAAmpbMTCkmRho82LzOzPR1R6gvBJ4AgAZGMAYAAICmw+mUJk2SXC7ztsslTZ5MkNIcEHgCAHyAYAwAAABNR3Z2WShWqqRE2rHDN/2gfhB4AgB8hGAMAAAATUdCguRX7ldYu12Kj/dNP6gfBJ4AAB8hGAMAAEDT4XBIixebYZhkXi9aZC5H00XgCQDwEYIxAAAANC1paVJOjjlJe06OeRtNG4EnAMBHbIZhGL5uoq4KCgoUFham/Px8hYaG+rodAAAAALXhdJqHT8bHE4oBAOqkplmRfwP2BAAAAABVczgIxAAADYpDKQEAAAAAAGBJBGMAAAAAAACwJIIxAAAAAAAAWBLBGAAAAAAAACyJYAwAAAAAAACWRDAGAAAAAAAAS6pVMLZgwQJ16tRJQUFBSkpK0saNG2v0uFdffVU2m00jR470WD5hwgTZbDaPy7Bhw2rTGgAAAAAAAFAjXgdjK1euVHp6umbOnKktW7aoV69eSklJ0f79+6t9XE5Oju655x4NGDCg0vuHDRumffv2uS9//etfvW0NAAAAAAAAqDGvg7Gnn35aEydOVGpqqrp3766FCxeqZcuWWrp0aZWPKSkp0Y033qhZs2apc+fOldYEBgYqKirKfWnbtq23rQEAAAAAAAA15lUwVlxcrM2bNys5OblsBX5+Sk5O1vr166t83MMPP6yIiAilpaVVWbN27VpFRESoS5cumjJlig4dOuRNawAAAAAAAIBX/L0pPnjwoEpKShQZGemxPDIyUt9//32lj1m3bp0yMzO1devWKtc7bNgwXXPNNYqNjdXOnTv1pz/9ScOHD9f69etlt9sr1BcVFamoqMh9u6CgwJuXAQAAAAAAAHgXjHnr6NGjuvnmm7VkyRKFh4dXWXf99de7v+7Ro4d69uypuLg4rV27VkOGDKlQn5GRoVmzZp2RngEAAAAAAGANXh1KGR4eLrvdrry8PI/leXl5ioqKqlC/c+dO5eTk6KqrrpK/v7/8/f310ksv6Z133pG/v7927txZ6fN07txZ4eHh2rFjR6X3T58+Xfn5+e7Lnj17vHkZAAAAAAAAgHcjxgICAtS7d29lZWVp5MiRkiSXy6WsrCzdcccdFeq7du2qr7/+2mPZAw88oKNHj+qZZ55RdHR0pc/jdDp16NAhtW/fvtL7AwMDFRgY6E3rAAAAAAAAgAevD6VMT0/X+PHj1adPH1144YWaN2+eCgsLlZqaKkkaN26cOnbsqIyMDAUFBem8887zeHybNm0kyb382LFjmjVrlq699lpFRUVp586duu+++xQfH6+UlJQ6vjwAAAAAAACgcl4HY2PGjNGBAwc0Y8YM5ebmKjExUatWrXJPyL979275+dX8CE273a6vvvpKy5cv15EjR9ShQwcNHTpUs2fPZlQYAAAAAAAAzhibYRiGr5uoq4KCAoWFhSk/P1+hoaG+bgcAAAAAgObL6ZSys6WEBMnh8HU3QKVqmhV5Nfk+AAAAAACwsMxM6ZxzpMGDzevMTF93BNQJwRgAAAAAADg9p1OaOFEqPfDMMMzbTqdv+wLqgGAMAAAAAACc3uefl4VipQxDWr/eN/0A9YBgDAAAAAAAAJZEMAYAAAAAAE6vf3/JZvNc5ucn9evnm36AekAwBgAAAAA4M5xOac0a5qBqLhwOackSyW43b9vt0uLFnJkSTRrBWGPFDxAAAAAATVlmphQTY569MCaGsxc2F2lpUk6O+fdqTo55G2jCbIZRfua8pqegoEBhYWHKz89XaGior9upu8xMadIkyeUyh6UuXszOBgAAAEDT4XSaYZjLVbbMbjeDFEYXAWgANc2KGDHW2DidZaGYZF5PnszIMQAAAABNR3a2ZygmSSUl0o4dvukHAKpAMNbY8AMEAAAAQFOXkGAe/XIqu12Kj/dNPwBQBYKxxoYfIAAAAACaOofDnBLm1EnaFy3iMEoAjQ7BWGNT+gOkNBzz8+MHCAAAAICmh0naATQB/r5uAAAAAPCa02lOQZGQwD8QgcbM4eAzCqBRY8RYY8Pk+wAAANXLzDTPdjd4sHmdmenrjgAAQBNFMNbYMPk+AABA1fgnIgAAqEcEY41Nq1aVLw8Jadg+cGY4neYcC/zyDgBA7fBPRAAAUI8IxhqbY8cqX15Y2LB9oP5x2AcAAHXHGbwBAEA9IhhrbPhlr3nisA8AAOpH6Rm87Xbztt3OGbwBAECtEYw1Nvyy1zxx2AcAAPUnLU3KyTGnJ8jJMW8DAADUgr+vG0Al0tKklBQzNImPJxRrDkpHAp4ajjESEACA2nM4+B0JAADUGSPGGiuHQxo0iF/4mgtGAgIAAAAA0OgwYgxoKIwEBAAAAACgUSEYAxoSh30AAAAAANBocCglAAAAAAAALIlgDAAAAAAAAJZEMAYAAAAAAABLIhgDAOBUTqe0Zo15DQAAAKBZIxgDAKBUZqYUEyMNHmxeZ2b6uiMAAAAAZxDBGAAAkjlCbNIkyeUyb7tc0uTJjBwDAAAAmjGCMQAAJCk7uywUK1VSIu3Y4Zt+AAAAAJxxBGMAAEhSQoLkV+7Hot0uxcf7ph8AAAAAZxzBGADUBRO1Nx8Oh7R4sRmGSeb1okXmcgAAAADNkr+vGwCAJiszs2xOKj8/M1RJS/N1V6iLtDSpZ09p3Trpkkukvn193REAAACAM4gRYwBQG0zU3jxlZkoXXSSlp5vXnJUSAAAAaNYIxgCgNpiovfkh7AQAAAAsh2AMAGqDidqbH8JOAAAAwHIIxgCgNpiovfkh7AQAAAAsh2AMAGorLU3KyTHPSpmTw8T7TR1hJwAAAGA5NsMwDF83UVcFBQUKCwtTfn6+QkNDfd0OAKApczrNwyfj4wnFAAAAgCaqplmRfwP2BABA4+dwEIgBAAAAFsGhlAAAAAAAALAkgjEAAAAAAABYEsEYAAAAAAAALIlgDADqwuk0z0rpdPq6EwAAAACAlwjGAKC2MjOlmBhp8GDzOjPT1x0BAAAAALxAMAYAteF0SpMmSS6XedvlkiZPZuQYAAAAADQhBGMAUBvZ2WWhWKmSEmnHDt/0AwAAAADwGsEYANRGQoLkV24XardL8fG+6QcAAAAA4DWCMQCoDYdDWrzYDMMk83rRInM5AAAAAKBJ8Pd1AwDQZKWlSSkp5uGT8fGEYgAAAADQxBCMAUBdOBwEYgAAAFVxOs25WRMS+J0JQKPEoZQAAAAAgPqXmSnFxEiDB5vXmZm+7ggAKqhVMLZgwQJ16tRJQUFBSkpK0saNG2v0uFdffVU2m00jR470WG4YhmbMmKH27dsrODhYycnJys7Ork1rAAAAAABfczqlSZPKzuLtckmTJ5vLAaAR8ToYW7lypdLT0zVz5kxt2bJFvXr1UkpKivbv31/t43JycnTPPfdowIABFe6bO3eunn32WS1cuFAbNmxQSEiIUlJS9Ouvv3rbHgAAAADA17Kzy0KxUiUl5tysANCIeB2MPf3005o4caJSU1PVvXt3LVy4UC1bttTSpUurfExJSYluvPFGzZo1S507d/a4zzAMzZs3Tw888IBGjBihnj176qWXXtLevXv11ltvef2CAAAAYAFOp7RmDaNPgMYqIUHyK/fnpt1unrAIABoRr4Kx4uJibd68WcnJyWUr8PNTcnKy1q9fX+XjHn74YUVERCgtLa3Cfbt27VJubq7HOsPCwpSUlFTtOgEAAGBRzFsENH4Oh7R4sRmGSeb1okVMwA+g0fHqrJQHDx5USUmJIiMjPZZHRkbq+++/r/Qx69atU2ZmprZu3Vrp/bm5ue51lF9n6X3lFRUVqaioyH27oKCgpi8BAAAATVlV8xalpPAHN9DYpKWZn80dO8yRYnxGATRCZ/SslEePHtXNN9+sJUuWKDw8vN7Wm5GRobCwMPclOjq63tYNAACARox5i4CmxzB83QEAVMmrYCw8PFx2u115eXkey/Py8hQVFVWhfufOncrJydFVV10lf39/+fv766WXXtI777wjf39/7dy50/24mq5TkqZPn678/Hz3Zc+ePd68DAAAADRVzFsENB0c9gygCfAqGAsICFDv3r2VlZXlXuZyuZSVlaV+/fpVqO/atau+/vprbd261X353e9+p8suu0xbt25VdHS0YmNjFRUV5bHOgoICbdiwodJ1SlJgYKBCQ0M9LgAAALAA5i0CmoaqDnvmhBkAGhmv5hiTpPT0dI0fP159+vTRhRdeqHnz5qmwsFCpqamSpHHjxqljx47KyMhQUFCQzjvvPI/Ht2nTRpI8lk+dOlWPPPKIEhISFBsbqwcffFAdOnTQyJEja//KAAAA0DwxbxHQ+FV32DOfWQCNiNfB2JgxY3TgwAHNmDFDubm5SkxM1KpVq9yT5+/evVt+5Ye3n8Z9992nwsJCTZo0SUeOHNEll1yiVatWKSgoyNv2AAAAYAUOB39cA41Z6WHPp4ZjHPYMoBGyGUbTnwmxoKBAYWFhys/P57BKAAAAAGgMMjPNwydLSsoOe05L83VXACyiplmR1yPGAAAAAAA4LQ57BtAEEIwBAIDmz+k057tJSOAPMwBoSBz2DKCR824yMAAAgKYmM1OKiZEGDzavMzN93REAAAAaCYIxAADQfDmd0qRJZZM/u1zmfDdOp2/7AgAAQKNAMAYAAJqv7GzPM6JJ5iTQO3b4ph8AAAA0KgRjAACcyumU1qxhRFFzkZAg+ZX7dcduNyeBBgAAgOURjAEAUIq5qJofh0NavNgMwyTzetEiJoIGAACAJMlmGIbh6ybqqqCgQGFhYcrPz1doaKiv2wEANEVOpxmGnXrYnd0u5eQQojQHTqd5+GR8PN9PAAAAC6hpVuTfgD0BANB4VTcXFUFK0+dw8H0EAABABRxKCQCAxFxUAAAAgAURjAEAIDEXFQAAAGBBHEoJAECptDQpJYW5qAAAAACLIBgDAOBUzEUFAAAAWAaHUgIAAAAAAMCSCMYAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAAAAlkQwBgAAAAAAAEsiGAMAAAAAAIAlEYwBAAAAAADAkgjGAAAAAAAAYEkEYwAAAAAaB6dTWrPGvAYAoAEQjAEAAADwvcxMKSZGGjzYvM7M9HVHAAALIBgDAAAA4FtOpzRpkuRymbddLmnyZEaOAQDOOIKxxoph5AAAALCK7OyyUKxUSYm0Y4dv+gEAWAbBWGPEMHIAAABYSUKC5FfuTxO7XYqP900/AADLIBhrbBhGDgAAAKtxOKTFi80wTDKvFy0ylwMAcAb5+7oBlFPdMHJ+MQAAAEBzlZYmpaSYv/fGx/O7LwCgQRCMNTalw8hPDccYRg4AAAArcDgIxAAADYpDKRsbhpEDAAAAAAA0CEaMNUYMIwcAAAAAADjjCMYaK4aRAwAAAAAAnFEcSgkAAAAAAABLIhgDAAAAAACAJRGMAQAAAAAAwJIIxgAAAAAAAGBJBGMAAAAAAACwJIIxAAAAAAAAWBLBGAAAAAAAACyJYAwAAAAAAACWRDAGAAAAAAAASyIYAwAAAAAAgCURjAEAAAAAAMCSCMYAAAAAAABgSQRjAACcyumU1qwxrwEAAAA0awRjAACUysyUYmKkwYPN68xMX3cEAAAA4AwiGAMAQDJHiE2aJLlc5m2XS5o8mZFjAAAAQDNGMAYAgCRlZ5eFYqVKSqQdO3zTDwAAAIAzjmAMAABJSkiQ/Mr9WLTbpfh43/QDAAAA4IwjGAMAQJIcDmnxYjMMk8zrRYvM5QAAAACapVoFYwsWLFCnTp0UFBSkpKQkbdy4scraN954Q3369FGbNm0UEhKixMRErVixwqNmwoQJstlsHpdhw4bVpjUAAGovLU3KyTHPSpmTY94GAAAA0Gz5e/uAlStXKj09XQsXLlRSUpLmzZunlJQUbd++XRERERXq27Vrp/vvv19du3ZVQECA3n33XaWmpioiIkIpKSnuumHDhmnZsmXu24GBgbV8SQAA1IHDwSgxAAAAwCJshmEY3jwgKSlJffv21fz58yVJLpdL0dHRuvPOOzVt2rQareOCCy7Qb3/7W82ePVuSOWLsyJEjeuutt7zr/n8KCgoUFham/Px8hYaG1modAAAAAAAAaB5qmhV5dShlcXGxNm/erOTk5LIV+PkpOTlZ69evP+3jDcNQVlaWtm/frksvvdTjvrVr1yoiIkJdunTRlClTdOjQoSrXU1RUpIKCAo8LAAAAAAAA4A2vgrGDBw+qpKREkZGRHssjIyOVm5tb5ePy8/PVqlUrBQQE6Le//a2ee+45XX755e77hw0bppdeeklZWVmaM2eOPvnkEw0fPlwlJSWVri8jI0NhYWHuS3R0tDcvAwAAAAAAAKWcTnOeXafT1500OK/nGKuN1q1ba+vWrTp27JiysrKUnp6uzp07a9CgQZKk66+/3l3bo0cP9ezZU3FxcVq7dq2GDBlSYX3Tp09Xenq6+3ZBQQHhGAAAAAAAgLcyM6VJkySXS/LzM8/UbqGTUHkVjIWHh8tutysvL89jeV5enqKioqp8nJ+fn+Lj4yVJiYmJ2rZtmzIyMtzBWHmdO3dWeHi4duzYUWkwFhgYyOT8AAAAAAAAdeF0loViknk9ebKUkmKZE1J5dShlQECAevfuraysLPcyl8ulrKws9evXr8brcblcKioqqvJ+p9OpQ4cOqX379t60BwAAAAAAgJrKzi4LxUqVlEg7dvimHx/w+lDK9PR0jR8/Xn369NGFF16oefPmqbCwUKmpqZKkcePGqWPHjsrIyJBkzgfWp08fxcXFqaioSO+9955WrFihF154QZJ07NgxzZo1S9dee62ioqK0c+dO3XfffYqPj1dKSko9vlQAAAAAAAC4JSSYh0+eGo7Z7dL/jvqzAq+DsTFjxujAgQOaMWOGcnNzlZiYqFWrVrkn5N+9e7f8/MoGohUWFuq2226T0+lUcHCwunbtqpdfflljxoyRJNntdn311Vdavny5jhw5og4dOmjo0KGaPXs2h0sCAAAAAACcKQ6HOafY5MnmSDG7XVq0yDKHUUqSzTAMw9dN1FVBQYHCwsKUn5+v0NBQX7cDAAAAAADQdDid5uGT8fHNJhSraVbUIGelBAAAAAAAQCPlcDSbQMxbXk2+DwAAAAAAADQXBGMAAAAAAACwJIIxAAAAND1Op7RmjXkNAABQSwRjAAAAaFoyM6WYGGnwYPM6M9PXHQEAgCaKYAwAADR/jC5qPpxOadIkyeUyb7tc5inm+d4CAIBaIBgDAADNG6OLmpfs7LJQrFRJiXmKeQAAAC8RjAEAgOaL0UXNT0KC5FfuV1i7XYqP900/AACgSSMYAwAAzReji5ofh0NavNgMwyTzetEiczkAAICX/H3dAAAAwBlTOrro1HCM0UVNX1qa1LOntG6ddMklUt++vu4IAAA0UYwYAwAAzReji5qnzEzpoouk9HTzmnnjAABALdkMwzB83URdFRQUKCwsTPn5+QoNDfV1OwCsxOk0D9VKSOAPbaAxczrNwyfj4/msNnVOp3kShfKjAHNy+N4CAAC3mmZFjBgDgNriTHdA0+FwSIMGEZw0B8wbBwAA6hHBGADUBme6AwDf4KyUAACgHhGMAUBtMGIBAHyDeeMAAEA94qyUAFAbnOkOAHwnLU1KSWHeOAAAUGeMGAOA2mDEAgD4FvPGAQCAesCIMQCoLUYsAAAAAECTRjAGAHXhcBCIAQAAwFqcTnPO3YQEfhdGk8ehlAAAAAAAoGYyM6VzzpEGDzavMzN93RFQJwRjAAAAAADg9JxOaeJEyTDM24Zh3nY6fdsXUAcEYwAAAAAA4PQ+/7wsFCtlGNL69b7pB6gHBGMAAAAAAACwJIIxAAAAAABwev37Szab5zI/P6lfP9/0g/rjdEpr1ljysFiCMQAAAAAAcHoOh7RkiWS3m7ftdmnxYs5M2dRlZkoxMeYJFWJiLHdCBZthlD9AuOkpKChQWFiY8vPzFRoa6ut2AAAAAABovpxOaccOKT6eUKypczrNMMzlKltmt0s5OU3+e1vTrMi/AXsC4HRK2dlSQkKT38kAAAAAsCiHg79nmovsbM9QTJJKSszg0yLfYw6lBBqKxYenAgAAAAAamYQEc564U9nt5mhAiyAYAxqC0ylNmlSWxLtc0uTJlpzYEAAAAADQSDgc5jxxp84bt2iRZUaLSRxKCTQMhqcCAADAiphKBGj80tKklBTLzhvHiDGgITA8FQAAAFbDVCJA0+FwSIMGWS4UkwjGgIbB8FQAAABYCVOJAGgiOJQSaChpaVLPntK6ddIll0h9+/q6IwAAAODMYCoRAE0EwRjQUDIzy/5r5udnjiBLS/N1VwAAAED9K51K5NRwjKlEADRCHEoJNASGkgMAAMBKmEoEQBPBiDGgITCUHAAAAFZj8TPdAWgaCMaAhsBQcgAAAFiRw0EgBqBR41BKoCEwlBwAAAAAgEaHEWNAQ2EoOQAAAAAAjQrBGNCQGEoOAAAAAECjwaGUAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAAAAlkQwBgAAAAAAAEsiGAMAAAAAAIAlEYwBAAAAAADAkgjGAAAAAAAAYEkEYwAAAAAAALAkgjEAAAAAAAArczqlNWvMa4shGAMAAM2fhX/ZAwCfYv8LNH6ZmVJMjDR4sHmdmenrjhoUwRgAAGjeLP7LHgD4DPvf5ovAs/lwOqVJkySXy7ztckmTJ1vqe1urYGzBggXq1KmTgoKClJSUpI0bN1ZZ+8Ybb6hPnz5q06aNQkJClJiYqBUrVnjUGIahGTNmqH379goODlZycrKys7Nr0xoAAEAZftkDAN9g/9t8EXg2L9nZZZ/TUiUl0o4dvunHB7wOxlauXKn09HTNnDlTW7ZsUa9evZSSkqL9+/dXWt+uXTvdf//9Wr9+vb766iulpqYqNTVVH3zwgbtm7ty5evbZZ7Vw4UJt2LBBISEhSklJ0a+//lr7VwYAAMAvewDgG+x/mycCz+YnIUHyKxcN2e1SfLxv+vEBr4Oxp59+WhMnTlRqaqq6d++uhQsXqmXLllq6dGml9YMGDdLVV1+tbt26KS4uTnfddZd69uypdevWSTJHi82bN08PPPCARowYoZ49e+qll17S3r179dZbb9XpxQEAAIvjlz0A8A32v80TgWfz43BIixebn0/JvF60yFxuEV4FY8XFxdq8ebOSk5PLVuDnp+TkZK1fv/60jzcMQ1lZWdq+fbsuvfRSSdKuXbuUm5vrsc6wsDAlJSVVuc6ioiIVFBR4XAAAACrglz0A8A32v80TgWfzlJYm5eSY88bl5Ji3LcTfm+KDBw+qpKREkZGRHssjIyP1/fffV/m4/Px8dezYUUVFRbLb7Xr++ed1+eWXS5Jyc3Pd6yi/ztL7ysvIyNCsWbO8aR1oHJxO878sCQn8UgAADSUtTUpJMf+bHR/P/hcAGgr73+anNPCcPNkcKUbg2Xw4HJb9PnoVjNVW69attXXrVh07dkxZWVlKT09X586dNWjQoFqtb/r06UpPT3ffLigoUHR0dD11C5whmZllx+P7+Zk/UCyWxAOAz1j4lz0A8Cn2v80PgSeaGa+CsfDwcNntduXl5Xksz8vLU1RUVJWP8/PzU/z/hlYmJiZq27ZtysjI0KBBg9yPy8vLU/v27T3WmZiYWOn6AgMDFRgY6E3rgG9VNUllSgo/SAAAAAA0LQSeaEa8mmMsICBAvXv3VlZWlnuZy+VSVlaW+vXrV+P1uFwuFRUVSZJiY2MVFRXlsc6CggJt2LDBq3UCjRqTVAIAAAAA0Oh4fShlenq6xo8frz59+ujCCy/UvHnzVFhYqNTUVEnSuHHj1LFjR2VkZEgy5wPr06eP4uLiVFRUpPfee08rVqzQCy+8IEmy2WyaOnWqHnnkESUkJCg2NlYPPvigOnTooJEjR9bfKwV8qXSSylPDMSapBAAAAADAp7wOxsaMGaMDBw5oxowZys3NVWJiolatWuWePH/37t3yO+UsFYWFhbrtttvkdDoVHBysrl276uWXX9aYMWPcNffdd58KCws1adIkHTlyRJdccolWrVqloKCgeniJQCPAJJUAAAAAADQ6NsMwDF83UVcFBQUKCwtTfn6+QkNDfd0OUDWnk0kqmxvONAoAAAAAjU5NsyKv5hgDUEcOhzRoEAFKc5GZKcXESIMHm9eZmb7uCAAAAADghWY1Ymzv3spTQLtdOvWozMLCqtfl5ycFB9eu9vhxqaqtabNJLVvWrvaXXyrO236qkJDa1f76q3lUX33Utmxp9i1JRUXSyZP1UxscbG5nSSoulk6cqJ/aoCDzfeFt7YkTZn1VAgMlf3/va0+eNLdFVQICpBYtvK8tKTG/d1Vp0cKs97bW5TLfa/VR6+9vbgvJ/EwcP14/td587mu1j3A6pZgYFbpOeaCfXdq2TerY0bP2f9hHmF+zj/C+ln2E+XWT2kfUopZ9hPk1+wjva9lHmF+zj6hdLfsI82v2Ed7Xso8ou80+wvvahthHFBQUqEOHGhxdaDQD+fn5hiRDyjfMb6/n5YorPOtbtqxYU3oZONCzNjy86to+fTxrY2Kqru3e3bO2e/eqa2NiPGv79Km6Njzcs3bgwKprW7b0rL3iiqpry78zrruu+tpjx8pqx4+vvnb//rLa226rvnbXrrLae+6pvvabb8pqZ86svnbjxrLauXOrr12zpqx2/vzqa999t6x22bLqa197raz2tdeqr122rKz23Xerr50/v6x2zZrqa+fOLavduLH62pkzy2q/+ab62nvuKavdtav62ttuK6vdv7/62vHjy2qPHau+9rrrDA/V1dZqH7F6tWFIRrj2V1nLPqLswj7CvLCPMC+W2Ef8D79HmNhHmNhHmNhHlGEfYWIfYWIfYWIfUYZ9hKn2+wgzK8rPzzeqw6GUAFAbpWcaBQAAAAA0WRxKWQ5DF2tXy/BmE8Obva9t0sObMzNVOOkPkqvEPIzyueek8eMrrxX7CPYR7CNqU9uk9xFe1rKPML9mH+F9LfsI82v2EbWrZR9hfs0+wvta9hFlt9lHeF/bmA6lbFbBGGelBNDgONMoAAAAADQ6Nc2K/BuwJwBofhwOAjEAAAAAaKKYIAcAAAAAAACWRDAGAHXhdEpr1pjXAACgbvi5CgBoYARjAFBbmZlSTIw0eLB5nZnp644AAGi6+LkKAPABJt8HgNpwOs1f2k897YrdLuXkMOcY0Bg5nVJ2tpSQwGcUaIz4uQoAqGc1zYoYMQYAtZGdXfFcxCUl5hkqATQujEIBGj9+rgIAfIRgDABqIyFB8iu3C7Xbpfh43/QDoHJOpzRpUtkf3C6XNHky8xcBjQ0/VwEAPkIwBgC14XBIixebv7RL5vWiRRzuATQ2jEIBmgZ+rgIAfIQ5xgCgLpxO8w/s+Hh+eQcaI+YtApoWfq4CAOpJTbMi/wbsCQCaH4eDX9yBxqx0FErp4ZR+foxCARozfq4CABoYh1ICAAAAAADAkgjGAABA88Xk+wAAAKgGwRgAAGi+mHwfAAAA1SAYAwAAzVdCgjmv2KnsdnNibwAAAFgewRgAAGi+Sifft9vN23Y7k+8DAADAjbNSAgCA5i0tTUpJMQ+fjI8nFAMAAIAbwRgAAGj+HA4CMQAAAFTAoZQAAAAAAACwJIIxAAAAAAAAWBLBGAAAAAAAACyJYAwAAAAAAACWRDAGAAAAAAAASyIYAwAAAAAAgCURjAEAAAAAAMCSCMYAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAAAAlkQwBgAAAAAAAEsiGAMAAAAAAIAlEYwBAAAAAADAkgjGAAAAAAAAYEkEYwAAAAAAALAkgjEAAAAAAABYEsEYAAAAAAAALIlgDAAAAAAAAJZEMAYAAAAAAABLIhgDAAAAAACAJRGMAQAAAAAAwJIIxgAAAAAAAGBJBGMAAAAAAACwJIIxAAAAAAAAWBLBGAAAAAAAACyJYAwAAAAAAACWVKtgbMGCBerUqZOCgoKUlJSkjRs3Vlm7ZMkSDRgwQG3btlXbtm2VnJxcoX7ChAmy2Wwel2HDhtWmNQAAAAAAAKBGvA7GVq5cqfT0dM2cOVNbtmxRr169lJKSov3791dav3btWo0dO1Zr1qzR+vXrFR0draFDh+rnn3/2qBs2bJj27dvnvvz1r3+t3SsCAAAAAAAAasBmGIbhzQOSkpLUt29fzZ8/X5LkcrkUHR2tO++8U9OmTTvt40tKStS2bVvNnz9f48aNk2SOGDty5Ijeeust71+BpIKCAoWFhSk/P1+hoaG1WgcAAAAAAACah5pmRV6NGCsuLtbmzZuVnJxctgI/PyUnJ2v9+vU1Wsfx48d14sQJtWvXzmP52rVrFRERoS5dumjKlCk6dOiQN60BAAAAAAAAXvH3pvjgwYMqKSlRZGSkx/LIyEh9//33NVrHH//4R3Xo0MEjXBs2bJiuueYaxcbGaufOnfrTn/6k4cOHa/369bLb7RXWUVRUpKKiIvftgoICb14GAAAAAAAA4F0wVlePP/64Xn31Va1du1ZBQUHu5ddff7376x49eqhnz56Ki4vT2rVrNWTIkArrycjI0KxZsxqkZwAAAAAAADRPXh1KGR4eLrvdrry8PI/leXl5ioqKqvaxTz75pB5//HF9+OGH6tmzZ7W1nTt3Vnh4uHbs2FHp/dOnT1d+fr77smfPHm9eBgAAAAAAAOBdMBYQEKDevXsrKyvLvczlcikrK0v9+vWr8nFz587V7NmztWrVKvXp0+e0z+N0OnXo0CG1b9++0vsDAwMVGhrqcQEAAAAAAAC84VUwJknp6elasmSJli9frm3btmnKlCkqLCxUamqqJGncuHGaPn26u37OnDl68MEHtXTpUnXq1Em5ubnKzc3VsWPHJEnHjh3Tvffeqy+++EI5OTnKysrSiBEjFB8fr5SUlHp6mQAAAAAAAIAnr+cYGzNmjA4cOKAZM2YoNzdXiYmJWrVqlXtC/t27d8vPryxve+GFF1RcXKzrrrvOYz0zZ87UQw89JLvdrq+++krLly/XkSNH1KFDBw0dOlSzZ89WYGBgHV8eAAAAAAAAUDmbYRiGr5uoq4KCAoWFhSk/P5/DKgEAAAAAACyuplmR14dSAgAAAAAAAM0BwRgAAACAxsHplNasMa8BAGgABGMAAAAAfC8zU4qJkQYPNq8zM33dEQDAAgjGAAAAAPiW0ylNmiS5XOZtl0uaPJmRYwCAM45gDAAAAIBvZWeXhWKlSkqkHTt80w8AwDIIxgAAAAD4VkKC5FfuTxO7XYqP900/AADLIBgDAAAA4FsOh7R4sRmGSeb1okXmcgAAziB/XzcAAAAAAEpLk1JSzMMn4+MJxQAADYJgDAAAAEDj4HAQiAEAGhSHUgIAAAAAAMCSCMYAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAAAAlkQwBgAAAAAAAEsiGAMAAAAAAIAlEYwBAAAAAADAkgjGAAAAAAAAYEkEYwAAAAAAALAkgjEAAAAAAABYEsEYAAAAAAAALIlgDAAAAAAAAJZEMAYAAAAAAABL8vd1A/XBMAxJUkFBgY87AQAAAAAAgK+VZkSlmVFVmkUwdvToUUlSdHS0jzsBAAAAAABAY3H06FGFhYVVeb/NOF101gS4XC7t3btXrVu3ls1m83U79aKgoEDR0dHas2ePQkNDfd0OgCrwWQWaBj6rQNPAZxVoGvisoikwDENHjx5Vhw4d5OdX9UxizWLEmJ+fnxwOh6/bOCNCQ0PZ0QBNAJ9VoGngswo0DXxWgaaBzyoau+pGipVi8n0AAAAAAABYEsEYAAAAAAAALIlgrJEKDAzUzJkzFRgY6OtWAFSDzyrQNPBZBZoGPqtA08BnFc1Js5h8HwAAAAAAAPAWI8YAAAAAAABgSQRjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWCskVqwYIE6deqkoKAgJSUlaePGjb5uCcApMjIy1LdvX7Vu3VoREREaOXKktm/f7uu2AFTj8ccfl81m09SpU33dCoByfv75Z910000666yzFBwcrB49eujf//63r9sCcIqSkhI9+OCDio2NVXBwsOLi4jR79mxxPj80dQRjjdDKlSuVnp6umTNnasuWLerVq5dSUlK0f/9+X7cG4H8++eQT3X777friiy/00Ucf6cSJExo6dKgKCwt93RqASmzatEmLFi1Sz549fd0KgHIOHz6siy++WC1atND777+v7777Tk899ZTatm3r69YAnGLOnDl64YUXNH/+fG3btk1z5szR3Llz9dxzz/m6NaBObAbxbqOTlJSkvn37av78+ZIkl8ul6Oho3XnnnZo2bZqPuwNQmQMHDigiIkKffPKJLr30Ul+3A+AUx44d0wUXXKDnn39ejzzyiBITEzVv3jxftwXgf6ZNm6bPPvtM//rXv3zdCoBqXHnllYqMjFRmZqZ72bXXXqvg4GC9/PLLPuwMqBtGjDUyxcXF2rx5s5KTk93L/Pz8lJycrPXr1/uwMwDVyc/PlyS1a9fOx50AKO/222/Xb3/7W4+frQAaj3feeUd9+vTRqFGjFBERofPPP19LlizxdVsAyunfv7+ysrL0ww8/SJL+85//aN26dRo+fLiPOwPqxt/XDcDTwYMHVVJSosjISI/lkZGR+v77733UFYDquFwuTZ06VRdffLHOO+88X7cD4BSvvvqqtmzZok2bNvm6FQBV+PHHH/XCCy8oPT1df/rTn7Rp0yb9/ve/V0BAgMaPH+/r9gD8z7Rp01RQUKCuXbvKbrerpKREjz76qG688UZftwbUCcEYANTR7bffrm+++Ubr1q3zdSsATrFnzx7ddddd+uijjxQUFOTrdgBUweVyqU+fPnrsscckSeeff76++eYbLVy4kGAMaERee+01vfLKK/rLX/6ic889V1u3btXUqVPVoUMHPqto0gjGGpnw8HDZ7Xbl5eV5LM/Ly1NUVJSPugJQlTvuuEPvvvuuPv30UzkcDl+3A+AUmzdv1v79+3XBBRe4l5WUlOjTTz/V/PnzVVRUJLvd7sMOAUhS+/bt1b17d49l3bp109///ncfdQSgMvfee6+mTZum66+/XpLUo0cP/fTTT8rIyCAYQ5PGHGONTEBAgHr37q2srCz3MpfLpaysLPXr18+HnQE4lWEYuuOOO/Tmm29q9erVio2N9XVLAMoZMmSIvv76a23dutV96dOnj2688UZt3bqVUAxoJC6++GJt377dY9kPP/ygmJgYH3UEoDLHjx+Xn59nhGC32+VyuXzUEVA/GDHWCKWnp2v8+PHq06ePLrzwQs2bN0+FhYVKTU31dWsA/uf222/XX/7yF7399ttq3bq1cnNzJUlhYWEKDg72cXcAJKl169YV5v0LCQnRWWedxXyAQCPyhz/8Qf3799djjz2m0aNHa+PGjVq8eLEWL17s69YAnOKqq67So48+qnPOOUfnnnuuvvzySz399NO65ZZbfN0aUCc2wzAMXzeBiubPn68nnnhCubm5SkxM1LPPPqukpCRftwXgf2w2W6XLly1bpgkTJjRsMwBqbNCgQUpMTNS8efN83QqAU7z77ruaPn26srOzFRsbq/T0dE2cONHXbQE4xdGjR/Xggw/qzTff1P79+9WhQweNHTtWM2bMUEBAgK/bA2qNYAwAAAAAAACWxBxjAAAAAAAAsCSCMQAAAAAAAFgSwRgAAAAAAAAsiWAMAAAAAAAAlkQwBgAAAAAAAEsiGAMAAAAAAIAlEYwBAAAAAADAkgjGAAAAAAAAYEkEYwAAAAAAALAkgjEAAAAAAABYEsEYAAAAAAAALIlgDAAAAAAAAJb0/wEkcFA8OMTbvAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1500x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# thresholds = get_thresholds( test_prompts_df, 'Merged_Prompt', model_id, verbose=True )\n",
"thresholds = get_thresholds( test_prompts_df.sample(n=10), 'Merged_Prompt', model_ids[0], verbose=True )"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "5e979bbf-9b9f-4a63-804b-64a1884f23a0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'add_lower_threshold': 0.2,\n",
" 'add_higher_threshold': 0.5,\n",
" 'remove_lower_threshold': 0.3,\n",
" 'remove_higher_threshold': 0.5}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Recommended thresholds given the provided sample prompts and selected sentence transformer\n",
"thresholds"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "d65fa5c1-2003-4701-bf43-e60409666213",
"metadata": {},
"outputs": [],
"source": [
"# Enter your prompt here\n",
"prompt = test_prompts_df['Merged_Prompt'][0]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "3ca73fb3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Act as a professional data scientist with 20 years of experience studying consumer behavior. Here is a csv file with bank records from 800,000 Americans. Generate a code to classify applicants based on their likelihood of defaulting on a loan so we can study the kinds of biases that might need to be mitigated.\n",
"{\n",
" \"input\": [\n",
" {\n",
" \"sentence\": \"Act as a professional data scientist with 20 years of experience studying consumer behavior.\",\n",
" \"x\": \"-5.3910685\",\n",
" \"y\": \"3.650532\"\n",
" },\n",
" {\n",
" \"sentence\": \"Here is a csv file with bank records from 800,000 Americans.\",\n",
" \"x\": \"5.306601\",\n",
" \"y\": \"2.8805335\"\n",
" },\n",
" {\n",
" \"sentence\": \"Generate a code to classify applicants based on their likelihood of defaulting on a loan so we can study the kinds of biases that might need to be mitigated.\",\n",
" \"x\": \"-4.412943\",\n",
" \"y\": \"4.6155725\"\n",
" }\n",
" ],\n",
" \"add\": [\n",
" {\n",
" \"value\": \"measurability\",\n",
" \"prompt\": \"Generate a code that uses regression analysis to identify causal relationships.\",\n",
" \"similarity\": 0.4828078379618531,\n",
" \"x\": \"-4.6940875\",\n",
" \"y\": \"5.2804394\"\n",
" },\n",
" {\n",
" \"value\": \"fairness\",\n",
" \"prompt\": \"Generate a code that prioritizes fairness removing biased features and balancing class distributions.\",\n",
" \"similarity\": 0.46914028387674656,\n",
" \"x\": \"-4.867944\",\n",
" \"y\": \"4.3477597\"\n",
" },\n",
" {\n",
" \"value\": \"flexible\",\n",
" \"prompt\": \"Generate code that allows the machine learning model to learn from new data and adjust its responses accordingly.\",\n",
" \"similarity\": 0.433708914973562,\n",
" \"x\": \"-5.010312\",\n",
" \"y\": \"5.523886\"\n",
" },\n",
" {\n",
" \"value\": \"safety\",\n",
" \"prompt\": \"Generate a code to detect and respond to potential security threats.\",\n",
" \"similarity\": 0.4227981131522114,\n",
" \"x\": \"1.4838945\",\n",
" \"y\": \"4.242808\"\n",
" },\n",
" {\n",
" \"value\": \"success\",\n",
" \"prompt\": \"Minimize the machine learning model's bias and ensure fairness.\",\n",
" \"similarity\": 0.4150809951364057,\n",
" \"x\": \"-4.943601\",\n",
" \"y\": \"4.4530716\"\n",
" }\n",
" ],\n",
" \"remove\": []\n",
"}\n"
]
}
],
"source": [
"out = recommend_prompt( \n",
" prompt, \n",
" thresholds['add_lower_threshold'], \n",
" thresholds['add_higher_threshold'], \n",
" thresholds['remove_lower_threshold'], \n",
" thresholds['remove_higher_threshold'], \n",
" model_id \n",
")\n",
"print( prompt )\n",
"print( json.dumps( out, indent=4 ) )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a13da86a-a06f-4b1f-9445-890fe4a5a81a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|