File size: 19,797 Bytes
11276e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "1b95ba48",
   "metadata": {
    "id": "1b95ba48"
   },
   "source": [
    "# Responsible Prompting\n",
    "\n",
    "## Recipe: Populate embeddings\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "342f3b42-7d2b-4914-ac48-e01132744279",
   "metadata": {
    "id": "342f3b42-7d2b-4914-ac48-e01132744279"
   },
   "source": [
    "### Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "c5498911",
   "metadata": {
    "id": "c5498911"
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import os.path\n",
    "\n",
    "import re\n",
    "import requests\n",
    "import json\n",
    "import warnings\n",
    "import math\n",
    "# import numpy as np\n",
    "import pandas as pd\n",
    "from sentence_transformers import SentenceTransformer"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dc9210e4-0537-459f-be12-7381da11d338",
   "metadata": {
    "id": "dc9210e4-0537-459f-be12-7381da11d338"
   },
   "source": [
    "### Loading hugging face token from .env file"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "45b95c55",
   "metadata": {
    "id": "45b95c55"
   },
   "outputs": [],
   "source": [
    "if os.getenv(\"COLAB_RELEASE_TAG\"):\n",
    "    COLAB = True\n",
    "    from google.colab import userdata\n",
    "    HF_TOKEN = userdata.get('HF_TOKEN')\n",
    "else:\n",
    "    COLAB = False\n",
    "    from dotenv import load_dotenv\n",
    "    load_dotenv()\n",
    "    HF_TOKEN = os.getenv('HF_TOKEN')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "b87a3c65-0e08-4fa9-aa8f-2f9a2f6c3499",
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "b87a3c65-0e08-4fa9-aa8f-2f9a2f6c3499",
    "outputId": "6c751172-8e0e-4172-a4bf-2a36dfd69115"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 31,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "COLAB"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "63d7cb62-3825-4ca9-be99-c94c2cf34127",
   "metadata": {
    "id": "63d7cb62-3825-4ca9-be99-c94c2cf34127"
   },
   "source": [
    "### Sentence transformer model ids (from hugging face)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "95fb523c",
   "metadata": {
    "id": "95fb523c"
   },
   "outputs": [],
   "source": [
    "# These codes will be used in the hugging face request headers.\n",
    "# If you want to add more models, this is the place\n",
    "model_ids = [\n",
    "    \"sentence-transformers/all-MiniLM-L6-v2\",\n",
    "    \"BAAI/bge-large-en-v1.5\",\n",
    "    \"intfloat/multilingual-e5-large\"\n",
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0f11d170",
   "metadata": {
    "id": "0f11d170"
   },
   "source": [
    "### Functions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "cd09f66b",
   "metadata": {
    "id": "cd09f66b"
   },
   "outputs": [],
   "source": [
    "# Converts model_id into filenames\n",
    "def model_id_to_filename( model_id ):\n",
    "    return model_id.split('/')[1].lower()\n",
    "\n",
    "# Requests embeddings for a given sentence\n",
    "def query( texts, model_id ):\n",
    "    # Warning in case of prompts longer than 256 words\n",
    "    for t in texts :\n",
    "        n_words = len( re.split(r\"\\s+\", t ) )\n",
    "        if( n_words > 256 and model_id == \"sentence-transformers/all-MiniLM-L6-v2\" ):\n",
    "            warnings.warn( \"Warning: Sentence provided is longer than 256 words. Model all-MiniLM-L6-v2 expects sentences up to 256 words.\" )\n",
    "            warnings.warn( \"Word count: {}\".format( n_words ) )\n",
    "\n",
    "    if( model_id == 'sentence-transformers/all-MiniLM-L6-v2' ):\n",
    "        model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')\n",
    "        out = model.encode( texts ).tolist()\n",
    "    else:\n",
    "        api_url = f\"https://api-inference.huggingface.co/models/{model_id}\"\n",
    "        headers = {\"Authorization\": f\"Bearer {HF_TOKEN}\", \"Content-Type\": \"application/json\"}\n",
    "        print( \"Request url: \" + api_url )\n",
    "        response = requests.post(api_url, headers=headers, json={\"inputs\": texts })\n",
    "        # print( response.status_code ) \n",
    "        # print( response.text )\n",
    "        out = response.json()\n",
    "        \n",
    "    # making sure that different transformers retrieve the embedding\n",
    "    if( 'error' in out ):\n",
    "        return out\n",
    "    while( len( out ) < 384 ): # unpacking json responses in the form of [[[embedding]]]\n",
    "        out = out[0]\n",
    "    return out\n",
    "\n",
    "# Returns the centroid for a given value\n",
    "def get_centroid( v, dimension = 384, k = 10 ):\n",
    "    centroid = [0] * dimension\n",
    "    count = 0\n",
    "    for p in v['prompts']:\n",
    "        i = 0\n",
    "        while i < len( p['embedding'] ):\n",
    "            centroid[i] += p['embedding'][i]\n",
    "            i += 1\n",
    "        count += 1\n",
    "    i = 0\n",
    "    while i < len( centroid ):\n",
    "        centroid[i] /= count\n",
    "        i += 1\n",
    "\n",
    "    return centroid"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c39191c3",
   "metadata": {
    "id": "c39191c3"
   },
   "source": [
    "### Populating JSON files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "87316fa4-1fcf-41c4-9913-bc5704b25ea2",
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "87316fa4-1fcf-41c4-9913-bc5704b25ea2",
    "outputId": "2240cbbf-94e8-4450-976f-27ab8e5c68d8"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Opening existing file locally:  ../prompt-sentences-main/prompt_sentences.json\n",
      "Opening existing file locally:  ../prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json\n",
      "Dimensions from hugging face API response: 384\n",
      "Dimensions from json file: 384\n",
      "Old prompts:  2217\n",
      "New prompts:  0\n",
      "Errors:  0\n",
      "Successes:  0\n",
      "Updating centroids.\n",
      "Saving into file:  ../prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json\n",
      "\n",
      "\n",
      "Opening existing file locally:  ../prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Dimensions from hugging face API response: 1024\n",
      "Dimensions from json file: 1024\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Request url: https://api-inference.huggingface.co/models/BAAI/bge-large-en-v1.5\n",
      "Old prompts:  2194\n",
      "New prompts:  23\n",
      "Errors:  0\n",
      "Successes:  23\n",
      "Updating centroids.\n",
      "Saving into file:  ../prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json\n",
      "\n",
      "\n",
      "Opening existing file locally:  ../prompt-sentences-main/prompt_sentences-multilingual-e5-large.json\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Dimensions from hugging face API response: 1024\n",
      "Dimensions from json file: 1024\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Request url: https://api-inference.huggingface.co/models/intfloat/multilingual-e5-large\n",
      "Old prompts:  2194\n",
      "New prompts:  23\n",
      "Errors:  0\n",
      "Successes:  23\n",
      "Updating centroids.\n",
      "Saving into file:  ../prompt-sentences-main/prompt_sentences-multilingual-e5-large.json\n",
      "\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# JSON folder\n",
    "if( COLAB ):\n",
    "    json_folder = 'https://raw.githubusercontent.com/IBM/responsible-prompting-api/refs/heads/main/prompt-sentences-main/'\n",
    "else:\n",
    "    json_folder = '../prompt-sentences-main/'\n",
    "\n",
    "# INPUT FILE\n",
    "# Default file with empty embeddings\n",
    "json_in_file = json_folder + 'prompt_sentences.json'\n",
    "\n",
    "# Trying to open the files first\n",
    "if( COLAB ):\n",
    "    prompt_json_in = requests.get( json_in_file ).json()\n",
    "    print( 'Opening file from GitHub repo: ', json_in_file )\n",
    "else:\n",
    "    if( os.path.isfile( json_in_file ) ):\n",
    "        prompt_json_in = json.load( open( json_in_file ) )\n",
    "        print( 'Opening existing file locally: ', json_in_file )\n",
    "\n",
    "for model_id in model_ids:\n",
    "    # OUTPUT FILE\n",
    "    json_out_file_suffix = model_id_to_filename( model_id )\n",
    "    json_out_file = f\"{json_folder}prompt_sentences-{json_out_file_suffix}.json\"\n",
    "\n",
    "    # Trying to open the files first\n",
    "    if( COLAB ):\n",
    "        prompt_json_out = requests.get( json_out_file ).json()\n",
    "        print( 'Opening file from GitHub repo: ', json_out_file )\n",
    "    else:\n",
    "        if( os.path.isfile( json_out_file ) ):\n",
    "            prompt_json_out = json.load( open( json_out_file ) )\n",
    "            print( 'Opening existing file locally: ', json_out_file )\n",
    "        else:\n",
    "            # Creating an empty file for new transformer\n",
    "            print( 'Starting a file from scratch for model: ', model_id )\n",
    "\n",
    "    # API request test\n",
    "    api_response_dimensions = len( query( ['testing API endpoint'], model_id ) )\n",
    "    print( f\"Dimensions from hugging face API response: {api_response_dimensions}\" )\n",
    "    json_file_dimensions = len( prompt_json_out['positive_values'][0]['prompts'][0]['embedding'] )\n",
    "    print( f\"Dimensions from json file: {json_file_dimensions}\" )\n",
    "    if( api_response_dimensions != json_file_dimensions ):\n",
    "        warnings.warn( f\"Dimensions are different: API={api_response_dimensions} while JSON sentences file={json_file_dimensions}\" )\n",
    "\n",
    "    ############################\n",
    "    # Generate a new output file using the hashmap as auxiliary table hosting old and new/changed embeddings\n",
    "    ############################\n",
    "\n",
    "    # Using the output json with the prompts and embeddings\n",
    "    # prompt_json_out\n",
    "\n",
    "    # Create a hashmap with a key value containing a hash for the prompt and the already populated embedding\n",
    "    prompts_embeddings = {}\n",
    "    new_prompts = 0\n",
    "    old_prompts = 0\n",
    "    errors = 0\n",
    "    successes = 0\n",
    "\n",
    "    for v in prompt_json_out['positive_values']:\n",
    "        for p in v['prompts']:\n",
    "            if( p['embedding'] != [] ):\n",
    "                prompts_embeddings[ p['text'] ] = p['embedding']\n",
    "\n",
    "    for v in prompt_json_out['negative_values']:\n",
    "        for p in v['prompts']:\n",
    "            if( p['embedding'] != [] ):\n",
    "                prompts_embeddings[ p['text'] ] = p['embedding']\n",
    "\n",
    "    # Loading all prompts from prompt_json_in, potentially with new/changed sentences\n",
    "\n",
    "    # Iterate over the two lists, looking only for new/changed prompts that require the API request for embeddings\n",
    "    for v in prompt_json_in['positive_values']:\n",
    "        for p in v['prompts']:\n",
    "            if( p['text'] in prompts_embeddings ):\n",
    "                # Prompt found, no need to request embeddings\n",
    "                p['embedding'] = prompts_embeddings[ p['text'] ]\n",
    "                old_prompts += 1\n",
    "            else:\n",
    "                # Requesting embedding for new/changed prompt\n",
    "                embedding = query( p['text'], model_id )\n",
    "                if( 'error' in embedding ):\n",
    "                    errors += 1\n",
    "                else:\n",
    "                    # Add the new/changed prompt to the hashmap\n",
    "                    prompts_embeddings[ p['text'] ] = embedding\n",
    "\n",
    "                    # Using the new hash\n",
    "                    p['embedding'] = prompts_embeddings[ p['text'] ]\n",
    "                    successes += 1\n",
    "                new_prompts += 1\n",
    "\n",
    "    for v in prompt_json_in['negative_values']:\n",
    "        for p in v['prompts']:\n",
    "            if( p['text'] in prompts_embeddings ):\n",
    "                # Prompt found, no need to request embeddings\n",
    "                p['embedding'] = prompts_embeddings[ p['text'] ]\n",
    "                old_prompts += 1\n",
    "            else:\n",
    "                # Requesting embedding for new/changed prompt\n",
    "                embedding = query( p['text'], model_id )\n",
    "                if( 'error' in embedding ):\n",
    "                    errors += 1\n",
    "                else:\n",
    "                    # Add the new/changed prompt to the hashmap\n",
    "                    prompts_embeddings[ p['text'] ] = embedding\n",
    "\n",
    "                    # Using the new hash\n",
    "                    p['embedding'] = prompts_embeddings[ p['text'] ]\n",
    "                    successes += 1\n",
    "                new_prompts += 1\n",
    "\n",
    "    print( 'Old prompts: ', old_prompts )\n",
    "    print( 'New prompts: ', new_prompts )\n",
    "    print( 'Errors: ', errors )\n",
    "    print( 'Successes: ', successes )\n",
    "\n",
    "    # After all the embeddings are populated (with no errors), compute the centroids for each value\n",
    "    if( errors == 0 ):\n",
    "        print( 'Updating centroids.' )\n",
    "        for v in prompt_json_in['positive_values']:\n",
    "            v['centroid'] = get_centroid( v, json_file_dimensions, 10 )\n",
    "        for v in prompt_json_in['negative_values']:\n",
    "            v['centroid'] = get_centroid( v, json_file_dimensions, 10 )\n",
    "\n",
    "    # Saving the embeddings for a specific LLM\n",
    "    if( COLAB ):\n",
    "      json_out_file = f\"prompt_sentences-{json_out_file_suffix}.json\"\n",
    "\n",
    "    with open( json_out_file, 'w') as outfile:\n",
    "        print( 'Saving into file: ', json_out_file )\n",
    "        json.dump( prompt_json_in, outfile)\n",
    "        print( '\\n' )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2a257009-4021-4956-a3ee-5d39931ecd6b",
   "metadata": {
    "id": "2a257009-4021-4956-a3ee-5d39931ecd6b"
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0fe5a03b-5ebf-4361-a183-4a19261e4ec2",
   "metadata": {
    "id": "0fe5a03b-5ebf-4361-a183-4a19261e4ec2"
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "63dd3311-67fe-490a-9998-65422697dab2",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "colab": {
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}