sanjaybora04 commited on
Commit
31da93c
·
1 Parent(s): 5388e28
.devcontainer/Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM pytorch/pytorch:latest
2
+
3
+ # System dependencies (optional, for opencv and others)
4
+ RUN apt-get update && apt-get install -y ffmpeg libsm6 libxext6
5
+
6
+ # Install required Python packages
7
+ COPY requirements.txt .
8
+ RUN pip install --upgrade pip && pip install -r requirements.txt
9
+
10
+ # Run your app
11
+ CMD ["python", "app.py"]
.devcontainer/devcontainer.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Room-Tiler-Dev",
3
+ "build": {
4
+ "dockerfile": "Dockerfile",
5
+ "context": ".."
6
+ },
7
+
8
+ // Forward the Gradio port
9
+ "forwardPorts": [7860],
10
+
11
+ // Automatically start the app when the container boots
12
+ "postCreateCommand": "python /workspace/app.py --share --server-name 0.0.0.0",
13
+
14
+ // VS Code features: Python extension, auto-formatting, etc.
15
+ "features": {
16
+ "ghcr.io/devcontainers/features/python:1": { "version": "3.10" }
17
+ },
18
+
19
+ // Sets the default shell
20
+ "remoteUser": "root"
21
+ }
22
+
.gitattributes CHANGED
@@ -1,35 +1,35 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,14 +1,14 @@
1
- ---
2
- title: Floor Visualizer
3
- emoji: 🏆
4
- colorFrom: indigo
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.31.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: Visualize custom texture or tiles on your floor
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: Floor Visualizer
3
+ emoji: 🏆
4
+ colorFrom: indigo
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 5.31.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ short_description: Visualize custom texture or tiles on your floor
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ import cv2
5
+ from PIL import Image
6
+ from torchvision import transforms
7
+ from transformers import SegformerForSemanticSegmentation, AutoImageProcessor
8
+
9
+ # Device
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+ # Load model and processor once
13
+ processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512")
14
+ model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512").to(device)
15
+
16
+ def process(room_img, tile_img):
17
+ room_img = room_img.convert("RGB")
18
+ tile_img = tile_img.convert("RGB")
19
+ room_np = np.array(room_img)
20
+
21
+ # Segmentation
22
+ inputs = processor(images=room_img, return_tensors="pt").to(device)
23
+ with torch.no_grad():
24
+ outputs = model(**inputs)
25
+ segmentation = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
26
+ segmentation_resized = cv2.resize(segmentation.astype(np.uint8), (room_np.shape[1], room_np.shape[0]), interpolation=cv2.INTER_NEAREST)
27
+
28
+ # Mask for floor (ADE20K class index 3)
29
+ floor_class_index = 3
30
+ mask_bin = (segmentation_resized == floor_class_index).astype(np.uint8)
31
+
32
+ # Largest contour
33
+ contours, _ = cv2.findContours(mask_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
34
+ if not contours:
35
+ return room_img, Image.fromarray(mask_bin*255), tile_img, room_img
36
+ contour = max(contours, key=cv2.contourArea)
37
+ if len(contour) < 4:
38
+ return room_img, Image.fromarray(mask_bin*255), tile_img, room_img
39
+
40
+ x, y, w, h = cv2.boundingRect(contour)
41
+ src_pts = np.array([[x, y + h], [x + w, y + h], [x + w, y], [x, y]], dtype=np.float32)
42
+ offset = h * 0.5
43
+ dst_pts = np.array([[x - offset, y + h], [x + w + offset, y + h], [x + w, y], [x, y]], dtype=np.float32)
44
+ H = cv2.getPerspectiveTransform(src_pts, dst_pts)
45
+
46
+ # Resize tile
47
+ target_tile_width = room_np.shape[1] // 10
48
+ tile_aspect_ratio = tile_img.height / tile_img.width
49
+ target_tile_height = int(target_tile_width * tile_aspect_ratio)
50
+ tile_resized = tile_img.resize((target_tile_width, target_tile_height), Image.LANCZOS)
51
+ tile_np = np.array(tile_resized)
52
+
53
+ # Tile texture
54
+ tile_h, tile_w = tile_np.shape[:2]
55
+ room_h, room_w = room_np.shape[:2]
56
+ reps_y = room_h // tile_h + 2
57
+ reps_x = room_w // tile_w + 2
58
+ tiled_texture = np.tile(tile_np, (reps_y, reps_x, 1))[:room_h, :room_w]
59
+ warped_texture = cv2.warpPerspective(tiled_texture, H, (room_w, room_h))
60
+
61
+ # Blend
62
+ room_float = room_np.astype(np.float32) / 255.0
63
+ texture_float = warped_texture.astype(np.float32) / 255.0
64
+ room_gray = cv2.cvtColor(room_float, cv2.COLOR_RGB2GRAY)
65
+ lighting = np.stack([room_gray]*3, axis=-1)
66
+ lighting = np.clip(lighting * 1.2, 0, 1)
67
+ lit_texture = np.clip(texture_float * lighting, 0, 1)
68
+ mask_3ch = np.stack([mask_bin]*3, axis=-1)
69
+ blended = np.where(mask_3ch == 1, lit_texture, room_float)
70
+ blended_img = (blended * 255).astype(np.uint8)
71
+
72
+ return Image.fromarray(room_np), Image.fromarray(mask_bin * 255), Image.fromarray(warped_texture), Image.fromarray(blended_img)
73
+
74
+
75
+ demo = gr.Interface(
76
+ fn=process,
77
+ inputs=[gr.Image(label="Room Image", type="pil"), gr.Image(label="Tile Image", type="pil")],
78
+ outputs=[
79
+ gr.Image(label="Original Room"),
80
+ gr.Image(label="Floor Mask"),
81
+ gr.Image(label="Warped Texture"),
82
+ gr.Image(label="Final Overlay")
83
+ ],
84
+ title="Room Floor Tiler",
85
+ description="Upload a room image and a tile texture. The floor is automatically detected and overlaid with your selected tile using SegFormer and perspective warping."
86
+ )
87
+
88
+ if __name__ == "__main__":
89
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ transformers==4.38.2
3
+ opencv-python
4
+ matplotlib
5
+ timm
6
+ Pillow
7
+ gradio
8
+ setuptools>=65.5.1