File size: 5,587 Bytes
f50f696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "976fbfea",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "sys.path.insert(0,'..')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4b164f6b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from torch import nn\n",
    "\n",
    "from tqdm import tqdm\n",
    "\n",
    "\n",
    "from train import train\n",
    "import priors\n",
    "import encoders\n",
    "import positional_encodings\n",
    "import utils\n",
    "import bar_distribution\n",
    "\n",
    "\n",
    "from samlib.utils import chunker"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "29d423b4",
   "metadata": {},
   "outputs": [],
   "source": [
    "mykwargs = \\\n",
    "{\n",
    " 'bptt': 5*5+1,\n",
    "'nlayers': 6,\n",
    " 'dropout': 0.0, 'steps_per_epoch': 100,\n",
    " 'batch_size': 100}\n",
    "mnist_jobs_5shot_pi_prior_search = [\n",
    "    pretrain_and_eval( {'num_features': 28 * 28, 'fuse_x_y': False, 'num_outputs': 5,\n",
    "                                            'translations': False, 'jonas_style': True}, priors.stroke.DataLoader, Losses.ce, enc, emsize=emsize, nhead=nhead, warmup_epochs=warmup_epochs, nhid=nhid, y_encoder_generator=encoders.get_Canonical(5), lr=lr, epochs=epochs, single_eval_pos_gen=mykwargs['bptt']-1,\n",
    "                  extra_prior_kwargs_dict={'num_features': 28*28, 'fuse_x_y': False, 'num_outputs':5, 'only_train_for_last_idx': True,\n",
    "                                          'min_max_strokes': (1,max_strokes), 'min_max_len': (min_len, max_len), 'min_max_width': (min_width, max_width), 'max_offset': max_offset, 'max_target_offset': max_target_offset},\n",
    "                  **mykwargs)\n",
    "    for max_strokes, min_len, max_len, min_width, max_width, max_offset, max_target_offset in random_hypers\n",
    "    for enc in [encoders.Linear] for emsize in [1024] for nhead in [4] for nhid in [emsize*2] for warmup_epochs in [5] for lr in [.00001] for epochs in [128,1024] for _ in range(1)]\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "deb93d1e",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "@torch.inference_mode()\n",
    "def get_acc(finetuned_model, eval_pos, device='cpu', steps=100, train_mode=False, **mykwargs):\n",
    "    finetuned_model.to(device)\n",
    "    finetuned_model.eval()\n",
    "\n",
    "    t_dl = priors.omniglot.DataLoader(steps, batch_size=1000, seq_len=mykwargs['bptt'], train=train_mode,\n",
    "                                      **mykwargs['extra_prior_kwargs_dict'])\n",
    "\n",
    "    ps = []\n",
    "    ys = []\n",
    "    for x, y in tqdm(t_dl):\n",
    "        p = finetuned_model(tuple(e.to(device) for e in x), single_eval_pos=eval_pos)\n",
    "        ps.append(p)\n",
    "        ys.append(y)\n",
    "\n",
    "    ps = torch.cat(ps, 1)\n",
    "    ys = torch.cat(ys, 1)\n",
    "\n",
    "    def acc(ps, ys):\n",
    "        return (ps.argmax(-1) == ys.to(ps.device)).float().mean()\n",
    "\n",
    "    a = acc(ps[eval_pos], ys[eval_pos]).cpu()\n",
    "    print(a.item())\n",
    "    return a\n",
    "\n",
    "\n",
    "def train_and_eval(*args, **kwargs):\n",
    "    r = train(*args, **kwargs)\n",
    "    model = r[-1]\n",
    "    acc = get_acc(model, -1, device='cuda:0', **kwargs).cpu()\n",
    "    model.to('cpu')\n",
    "    return [acc]\n",
    "\n",
    "def pretrain_and_eval(extra_prior_kwargs_dict_eval,*args, **kwargs):\n",
    "    r = train(*args, **kwargs)\n",
    "    model = r[-1]\n",
    "    kwargs['extra_prior_kwargs_dict'] = extra_prior_kwargs_dict_eval\n",
    "    acc = get_acc(model, -1, device='cuda:0', **kwargs).cpu()\n",
    "    model.to('cpu')\n",
    "    return r, acc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "706ecbb7",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "emsize = 1024\n",
    "# mnist_jobs_5shot_pi[20].result()[-1].state_dict()\n",
    "mykwargs = \\\n",
    "    {'bptt': 5 * 5 + 1,\n",
    "     'nlayers': 6,\n",
    "     'nhead': 4, 'emsize': emsize,\n",
    "     'encoder_generator': encoders.Linear, 'nhid': emsize * 2}\n",
    "results = train_and_eval(priors.omniglot.DataLoader, Losses.ce, y_encoder_generator=encoders.get_Canonical(5),\n",
    "                   load_weights_from_this_state_dict=mnist_jobs_5shot_pi_prior_search[67][0][-1].state_dict(), epochs=32, lr=.00001, dropout=dropout,\n",
    "                   single_eval_pos_gen=mykwargs['bptt'] - 1,\n",
    "                   extra_prior_kwargs_dict={'num_features': 28 * 28, 'fuse_x_y': False, 'num_outputs': 5,\n",
    "                                            'translations': True, 'jonas_style': True},\n",
    "                   batch_size=100, steps_per_epoch=200, **mykwargs)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "611554b2",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}