Update model.py
Browse files
model.py
CHANGED
@@ -1,70 +1,48 @@
|
|
1 |
import os
|
2 |
-
|
3 |
from langchain.vectorstores import FAISS
|
4 |
-
from
|
5 |
from langchain_community.document_loaders import TextLoader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain.docstore.document import Document
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain_community.llms import HuggingFaceHub
|
10 |
-
from
|
11 |
|
12 |
-
#
|
13 |
-
CACHE_DIR =
|
14 |
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
15 |
os.environ["HF_HOME"] = CACHE_DIR
|
16 |
-
os.makedirs(CACHE_DIR, exist_ok=True)
|
17 |
|
18 |
-
# Constants
|
19 |
DATA_PATH = "/app/data"
|
20 |
VECTORSTORE_PATH = "/app/vectorstore"
|
21 |
DOCS_FILENAME = "context.txt"
|
22 |
-
VECTORSTORE_INDEX_NAME = "faiss_index"
|
23 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L6-v2"
|
24 |
-
LLM_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.1"
|
25 |
-
|
26 |
|
27 |
def load_embedding_model() -> Embeddings:
|
28 |
-
"""Load Hugging Face sentence transformer embeddings."""
|
29 |
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
30 |
|
31 |
-
|
32 |
-
def load_documents() -> List[Document]:
|
33 |
-
"""Load documents and split them into manageable chunks."""
|
34 |
loader = TextLoader(os.path.join(DATA_PATH, DOCS_FILENAME))
|
35 |
-
|
36 |
-
|
37 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
38 |
-
return splitter.split_documents(
|
39 |
-
|
40 |
|
41 |
def load_vectorstore() -> FAISS:
|
42 |
-
|
43 |
-
vectorstore_dir = os.path.join(VECTORSTORE_PATH, VECTORSTORE_INDEX_NAME)
|
44 |
embedding_model = load_embedding_model()
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
allow_dangerous_deserialization=True,
|
51 |
-
)
|
52 |
-
|
53 |
-
documents = load_documents()
|
54 |
-
vectorstore = FAISS.from_documents(documents, embedding_model)
|
55 |
-
vectorstore.save_local(vectorstore_dir)
|
56 |
return vectorstore
|
57 |
|
58 |
-
|
59 |
def ask_question(query: str) -> str:
|
60 |
-
"""Run a question-answering chain with the retriever and language model."""
|
61 |
vectorstore = load_vectorstore()
|
62 |
-
retriever = vectorstore.as_retriever()
|
63 |
-
|
64 |
llm = HuggingFaceHub(
|
65 |
-
repo_id=
|
66 |
model_kwargs={"temperature": 0.5, "max_tokens": 256},
|
67 |
)
|
68 |
-
|
69 |
-
|
70 |
-
return qa_chain.run(query)
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
3 |
from langchain.vectorstores import FAISS
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
from langchain_community.document_loaders import TextLoader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain.docstore.document import Document
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain_community.llms import HuggingFaceHub
|
10 |
+
from langchain.embeddings.base import Embeddings
|
11 |
|
12 |
+
# Use /tmp for writeable cache
|
13 |
+
CACHE_DIR = tempfile.gettempdir()
|
14 |
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
15 |
os.environ["HF_HOME"] = CACHE_DIR
|
|
|
16 |
|
|
|
17 |
DATA_PATH = "/app/data"
|
18 |
VECTORSTORE_PATH = "/app/vectorstore"
|
19 |
DOCS_FILENAME = "context.txt"
|
|
|
20 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L6-v2"
|
|
|
|
|
21 |
|
22 |
def load_embedding_model() -> Embeddings:
|
|
|
23 |
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
24 |
|
25 |
+
def load_documents() -> list[Document]:
|
|
|
|
|
26 |
loader = TextLoader(os.path.join(DATA_PATH, DOCS_FILENAME))
|
27 |
+
raw_docs = loader.load()
|
|
|
28 |
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
29 |
+
return splitter.split_documents(raw_docs)
|
|
|
30 |
|
31 |
def load_vectorstore() -> FAISS:
|
32 |
+
vectorstore_file = os.path.join(VECTORSTORE_PATH, "faiss_index")
|
|
|
33 |
embedding_model = load_embedding_model()
|
34 |
+
if os.path.exists(vectorstore_file):
|
35 |
+
return FAISS.load_local(vectorstore_file, embedding_model, allow_dangerous_deserialization=True)
|
36 |
+
docs = load_documents()
|
37 |
+
vectorstore = FAISS.from_documents(docs, embedding_model)
|
38 |
+
vectorstore.save_local(vectorstore_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
return vectorstore
|
40 |
|
|
|
41 |
def ask_question(query: str) -> str:
|
|
|
42 |
vectorstore = load_vectorstore()
|
|
|
|
|
43 |
llm = HuggingFaceHub(
|
44 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
45 |
model_kwargs={"temperature": 0.5, "max_tokens": 256},
|
46 |
)
|
47 |
+
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
|
48 |
+
return qa.run(query)
|
|