|
import os |
|
import tempfile |
|
import PyPDF2 |
|
from langchain.vectorstores import FAISS |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.docstore.document import Document |
|
from langchain.chains import RetrievalQA |
|
from langchain_huggingface import HuggingFaceEndpoint |
|
|
|
|
|
CACHE_DIR = tempfile.gettempdir() |
|
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR |
|
os.environ["HF_HOME"] = CACHE_DIR |
|
|
|
DATA_PATH = "/app/data" |
|
VECTORSTORE_PATH = "/app/vectorstore" |
|
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L6-v2" |
|
|
|
def load_embedding_model(): |
|
"""Load sentence transformer embeddings.""" |
|
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) |
|
|
|
def load_documents(pdf_path): |
|
"""Extract text from PDF and split into documents.""" |
|
try: |
|
with open(pdf_path, "rb") as f: |
|
pdf = PyPDF2.PdfReader(f) |
|
text = "".join(page.extract_text() or "" for page in pdf.pages) |
|
if not text.strip(): |
|
raise ValueError("No text extracted from PDF") |
|
|
|
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100) |
|
docs = splitter.create_documents([text]) |
|
return docs |
|
except Exception as e: |
|
raise ValueError(f"Failed to process PDF: {str(e)}") |
|
|
|
def load_vectorstore(pdf_path): |
|
"""Load or create FAISS vector store from PDF.""" |
|
vectorstore_file = os.path.join(VECTORSTORE_PATH, "faiss_index") |
|
embedding_model = load_embedding_model() |
|
|
|
if os.path.exists(vectorstore_file): |
|
try: |
|
return FAISS.load_local(vectorstore_file, embedding_model, allow_dangerous_deserialization=True) |
|
except: |
|
pass |
|
|
|
docs = load_documents(pdf_path) |
|
vectorstore = FAISS.from_documents(docs, embedding_model) |
|
vectorstore.save_local(vectorstore_file) |
|
return vectorstore |
|
|
|
def ask_question(query, pdf_path): |
|
"""Run RAG query and return answer with contexts.""" |
|
api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
if not api_key: |
|
raise ValueError("HUGGINGFACEHUB_API_TOKEN not set") |
|
|
|
vectorstore = load_vectorstore(pdf_path) |
|
llm = HuggingFaceEndpoint( |
|
repo_id="mistralai/Mistral-7B-Instruct-v0.2", |
|
huggingfacehub_api_token=api_key, |
|
temperature=0.5, |
|
max_new_tokens=256 |
|
) |
|
|
|
qa = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
retriever=vectorstore.as_retriever(search_kwargs={"k": 3}), |
|
return_source_documents=True |
|
) |
|
|
|
result = qa({"query": query}) |
|
return { |
|
"answer": result["result"], |
|
"contexts": [doc.page_content for doc in result["source_documents"]] |
|
} |