testing / model.py
samim2024's picture
Update model.py
d665d4a verified
raw
history blame
2.21 kB
import os
from langchain.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.docstore.document import Document
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFaceHub
from langchain.embeddings.base import Embeddings
# Set safe caching directories to avoid permission denied errors
os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
os.environ["HF_HOME"] = "/app/cache"
os.makedirs("/app/cache", exist_ok=True)
# Constants
DATA_PATH = "/app/data"
VECTORSTORE_PATH = "/app/vectorstore"
DOCS_FILENAME = "context.txt"
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L6-v2"
def load_embedding_model() -> Embeddings:
"""Initialize and return the HuggingFace embedding model."""
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
def load_documents() -> list[Document]:
"""Load and split documents into chunks."""
loader = TextLoader(os.path.join(DATA_PATH, DOCS_FILENAME))
raw_docs = loader.load()
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
docs = splitter.split_documents(raw_docs)
return docs
def load_vectorstore() -> FAISS:
"""Load or create FAISS vectorstore from documents."""
vectorstore_file = os.path.join(VECTORSTORE_PATH, "faiss_index")
embedding_model = load_embedding_model()
if os.path.exists(vectorstore_file):
return FAISS.load_local(vectorstore_file, embedding_model, allow_dangerous_deserialization=True)
docs = load_documents()
vectorstore = FAISS.from_documents(docs, embedding_model)
vectorstore.save_local(vectorstore_file)
return vectorstore
def ask_question(query: str) -> str:
"""Query the vectorstore and return the answer using the language model."""
vectorstore = load_vectorstore()
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.5, "max_tokens": 256},
)
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
return qa.run(query)