testing / model.py
samim2024's picture
Update model.py
e2765f4 verified
raw
history blame
2.67 kB
import os
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain.docstore.document import Document
# Load Hugging Face API token from environment
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
# Embedding model (can be changed to any sentence transformer model)
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Prompt template for Mistral
prompt_template = PromptTemplate(
input_variables=["context", "question"],
template="""You are an intelligent assistant. Use the context below to answer the question.
If the answer is not contained in the context, say "I don't know."
Context: {context}
Question: {question}
Answer:"""
)
def create_vectorstore(doc_path: str = "data/docs.txt"):
"""Create or load FAISS vectorstore from the given document."""
loader = TextLoader(doc_path)
documents = loader.load()
# Split into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
docs = text_splitter.split_documents(documents)
# Create FAISS vectorstore
vectordb = FAISS.from_documents(docs, embedding_model)
vectordb.save_local("vectorstore")
return vectordb
def load_vectorstore():
"""Load existing FAISS vectorstore from disk."""
return FAISS.load_local("vectorstore", embedding_model, allow_dangerous_deserialization=True)
def get_llm():
"""Load the HuggingFace Mistral LLM."""
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.5, "max_new_tokens": 512},
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
)
def build_qa_chain():
"""Build the full RAG QA chain."""
vectordb = load_vectorstore()
retriever = vectordb.as_retriever()
llm = get_llm()
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={"prompt": prompt_template}
)
return qa_chain
def ask_question(query: str) -> dict:
"""Handle a single user query."""
chain = build_qa_chain()
result = chain({"query": query})
return {
"answer": result["result"],
"sources": [doc.metadata.get("source", "unknown") for doc in result["source_documents"]]
}